
AD-A258 832 Ci)
AFIT/GCS/ENG/92D-22

DTIC

S ELECTE
JAN 0 6 199311

Eu,
X-AAARFE

An X Window Based Version
of the

AFIT Algorithm Animation Research Facility

THESIS

Charles R. Wright, Jr
Captain, USAF

AFIT/GCS/ENG/92D-22

Approved for public release; distribution unlimited

BEST
AVAILABLE COPY 93 1 04 027

AFIT/GCS/ENG/92D-22

X-AAARF

An X Window Based Version

of the

AFIT Algorithm Animation Research Facility

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force institute of Technology ? i E ECT-D 5

Air University

In Partial Fulfillment of the Accesion For

NTIS CRA&I
Requirements for the Degree of DTIC tAB

U Iln no-ji ced [
Master of Science in Computer Science JuiitionC

By ..

Charles R. Wright, Jr, B.SE.E Distributionl
Availability Codes

Captain, USAF

Dist Special

December, 1992

Approved for public release; distrihution unlimited

Acknowledgemrnents

This thesis would not have been possible without the support and understanding of my best

friend, my wife Amanda. That is a debt I will happily pursue the rest of my life.

Of course, Dr. Lamont deserves "extra credit," for his tolerance and understanding, and for

laughing at my jokes and agreeing with nearly everything I said - no one else does that.

Special thanks to my friends in the Software Engineering sequence for allowing me into their

presence and onto their workstations, and especially for so graciously tolerating an "old" infidel.

(Thank you, Mary Anne, for sharing my views on the importance of ice cream.)

Thanks to Lt Col Amburn for letting me "keep my fingers in" and for answering questions

out of turn.

Thanks also to Paul Chase for his gallant efforts at keeping me honest with his unending

stream of questions and sometimes ecletic observations on AAARF. No one can understate the

obvious better than an Aussie.

I must also acknowledge the contributions made by my sister Lydia, for keeping the welcome

mat out, and her husband Joe, who always kept a seat open in the canoe, regardless of the weather.

Finally, Watson deserves honorable mention because he was always ready to play, no matter

what time of night I wandered in.

Charles R. Wright, Jr

Table of Contents

Page

Acknowledgements ii

Table of Contents iii

List of Figures ... vii

Abstract VII

I. Introduction 1-1

1.1 Background 1-1

1.1.1 Algorithm Classes 1-2

1.1.2 Algorithm Classes Supported 1-3

1.1.3 Animation Support 1-3

1.1.4 The AAARF Design 1-3

1.1.5 AAARF History 1-4

1.2 Problem 1-4

1.2.1 Outdated GUI 1-4

1.2.2 Parallel Algorithm and Performance Animation 1-5

1.2.3 Parallel Architectures 1-5

1.3 Scope 1-6

1.4 Assumptions 1-6

1.5 Overview 1-7

1.6 Summary 1-7

11. Requirements Analysis 2-1

2.1 Introduction 2-1

2.2 AAARF Status................................ 2-

hIII

Page

2.3 Summary of Candidate Tasks 2-3

2.4 Summary of Current Knowledge 2-4

2.4.1 Animation Systems - A Sampling of Representative Systems 2-5

2.4.2 Parallel Performance Animation Systems and Techniques . . 2-7

2.4.3 Conclusion 2-14

2.4.4 XWindows GUI Systems 2-14

2.5 Requirements 2-15

2.5.1 GUI Requirements 2-15

2.6 Summary 2-16

II. AAARF Operational Maintenance 3-1

3.1 Introduction 3-1

3.2 Problems with the AAARF System 3-1

3.2.1 AAARF in General 3-1

3.2.2 Parallel Computer Performance Monitoring 3-3

3.3 Recommended Changes 3-8

3.3.1 AAARF in General 3-8

3.3.2 Parallel Computer Performance Monitoring 3-8

3.4 Implementation and Analysis of Results 3-12

3.4.1 AAARF in General '-12

3.4.2 Parallel Computer Performance Monitoring 3-13

3.5 Summary 3-17

IV. X-AAARF - Design and Implementation-.

4.1 Introduction 4-1

4.1.1 A Prototype X-AAARF- 1

4.1.2 SunView in an OpenWindows EInvirmment 4-2

4.2 Selecting a Replacement Graphical User Interface (GIl) - XView .. .- 3

iv

Page

4.2.1 Analysis of X Window Development Enviornments 4-3

4.2.2 Motivations for Choosing XView 4-8

4.2.3 A Closer Look at XView 4-9

4.3 GUi Replacement - Design, Implementation and Results 4-11

4.3.1 Replacement Strategy 4-12

4.3.2 Test Strategy 4-11

4.3.3 Design/Implementation Issues 4-14

4.3.4 The AAARF Main Process 4-18

4.3.5 The Common Library 4-19

4.3.6 The Array Sort, Class 4-21

4.3.7 The PViews Library 4-24

4.3.8 General Results 4-28

4.4 Summary 4-29

V. Conclusions and Recommendations 5-1

5.1 Conclusions 5-1

5.2 Recommendations 5-3

5.2.1 AAARF Maintenance 5-3

5.2.2 AAARF Training 5-4

5.2.3 Individually Windowed Views 5-4

5.2.4 AAARF as a Classroom TIool - The Client Programmer Interface 5-5

5.2.5 A Formal Specification Language for Algorithm Animation 5-6

5.2.6 AAARF Responsibility 5-9

5.2.7 The Future of AAARF 5-9

Appendix A. A BRIEF Discussion of X A-I

v

Page

Appendix B. A Simple Example of PRASE Instrumentation - The Ring Program. B-i

B.1 Introduction B-I

B.2 Overview B- 1

B.3 Running the Animation B-2

B.4 Bailing Yourself Out 13-7

B.5 Instrumenting a Simple Cube Program B-8

B.5.1 Instrumenting the host Program.. 13-8

B.5.2 Instrumenting the node Program(s) B-9

B.5.3 Changes to the Makefile B-II

B.6 Source Listings ... B-12

Bibliography BIB-I

Vita VITA- I

vi

List of Figuries

Figure Page

3.1. Network Connections for Automatic Mode. In manual mode, the fork/exec link

between server and algorithm is not present. The algorithm must be started man-

ually 3-4

4.1. Programmer view of the complete X Window System [31:12] 4-4

4.2. The AAARF modular design. Each outer box is a self contained system with it's

own window based interface. Inner boxes are separate processes 4-113

4.3. (a) Original structure of the Main window. Each window is a separate window.

(b) Original structure of lie Algorithm window. The view windows are contained

within the Algorithm window. The remaining windows are separate windows... 4-15

4.4. New structure of the Algorithm window 4-16

4.5. SunView Master Control Panel for the ArraySorts class 4-22

4.6, XView Master Control Panel for the ArraySorts class 4-23

4.7. Master Control Panel for the Parallel Performance Class 4-25

4.8. Parallel View Options panel 4-26

5.1. Proposed environment for the development, of a formal specification language for

algorithm animation 5-7

vii

AFIT/GCS/ENG/92D-22

Abstract

Algorithm animation is the process of graphically representing the state changes which occur

during the execution of the control structure (algorithm) of computer programs. Rather than

simply viewing program execution as changes in the contents of static data striictures, algoritlhin

animation presents program execution as a series of state transitions. This is done by associating

specific decision points, and their resulting actions during execution, with corresponding changes

in the graphical representation of the algorithm's data structure. In effect, algorithm animation

attenpts to show the uhy (algorithm execution) that is associated with the tuhat and (tow (changes

in the contents of the data st ructuires).

The AFIT Algorithm Animation Research Facility was developed by the Air Force Institute

of Technology (AFIT) as a teaching aid for data structures and algorithm design of sequential

processes. However, AAARF's unique design makes it, particularly suitable for the animalion of

algorithms running on remote systems. In particular, an extensive set of parallel performance

aniniations has been developed for the Intel iISSC/2 tIypercube for parallel program analysis and

performance optimizat~ion.

The AAARF system was originally developed using the Sun Microsystemss SuViewrM win-

(fowlig system. Recent advances in Graphical User Interface (GUI) technology combined wit h Stin's

adoption of the X Window System as their workstation window environment, has necessitated the

replacement of AAARF's GUI with a modern, X-based user interface.

This report describes the (GIUI replacement process. starting with selecting a (G117 toolkit,

designing and implementing the new user interface, testing. and finally the results of iniplement Iiig

the new tser interface, Also incltuded is a discuission of several changes/eihancmeuts to AA.ARF

which were necessary before the GUI replacement process began.

vini

X-AAARF

An X Window Based Version

of the

AFIT Algorithm- Animation Research Facility

I. Iniro.duehiol

Algorithm animiation is the process of graphically representing the state changes which occur

du1ring the execution of tile Control structure (algorithmn) of computer programns. Rather than simlply

viewing program exectition as changes in the contents of st~atic dlat a stmrict ures. algorithmn animat ion

presents program execution as a series of state t~ransitioris or Intercsting Eurnts (IF) [4:13, 56i-57].

I his is (lone by associat~ing specific decision points, and t heir resulting act ions during execution,

with corresponding changes in thle graphical representation of the algorithmn's dlata st ructure. lIn

effect, algorithmn aninmat ion attempts to show t he, why (algorit hin execution) t hat is associated with

he i- what and ho ii (changes iii the contents of t he dat a st ructuiires).

Algorithm animation Is us"eful ill thet developimenlt of new software, as well a lithe effectivel use

of exist inig software. It is also anl effective aid in teaching a Igorit hiii design and undi~erst anin~ig t lie

behavior of existing algorithm is. Recent ly. algori tliiii ani mat ion techiniquies have beeni adlapted for

uise, withI parallel computers [29] as aii aid in understaiiding the complex iiiter-relat ioiislips that

exist bet ween parallel computer architectutres, a nd the (decomnpositIion aii(l partitioning of al gori tlinis

for execrition onl these nmach ineis,

1I Background

'I'lie A FIT A Igorithwi An imat ion F'acility (A A A F) [.t, 29] is a general purpose visualization

tool for the(animiation of algorithms. Thel(applicatijoins for A AAR F are, education, and analy'sis- and

debugging. To support these applications AAARF provides for two classes of users: uid-uscrs, and

client-programmers [4:1][2:6].

In the educational mode. end-users interact with animations developed by client-programmer•

for the purpose of studying and analyzing the executio'i of a particular algorithm or class of al-

gorithms. In the client-programmer mode, the users are, typically, the client-prograiners their-

selves. Client programmers use AAARF for two purposes: the development, of new classes for

end-users, and for debugging and analysis. AAARF provides two user interfaces: a window based.

mouse driven interface for end-users, and a function and library based software interface for client-

programmers. AAARF is written in C [12] and uses the XView (X Window-System-based Vi-

sual/Integrated Environment for Worktations) [10] user-interface toolkit from SunnR Microsystems.

running under OpenWindows TM [27]. AAARF currently runs on Sun SPARCstat ion2 workst at ions.

AAARF supports the animation of processes running on both serial and parallel architectures.

1.1.1 Algorithm Classes AAARF partitions algorithm space into classes. vith class wnim-

bership being defined as a function of the transforniation process an algorithIn performs while

operating on an input set and producing an output set. (This classification scheme is dhefined

fornually [0:11-14].) This classification scheme car be applied broadly, as in tle case of integer

array sort algorithms, or more narrowly, as a measure of the effectwivwneuu and efficiency of (ditlerent

implementations of a particular algorithm. In the broad sense. algorithms from the same class art,

defined to operate on the same input,, and produce identical outputs, albeit by different ineans. In

the narrow case, the same algorithm opcmates on ain input, produciuig two kinds of output which

are of interest: that which is specific to the algorithm (and its associated "broad" class) antd i i-

plerneutation specific information (usually architectuore related). fromn which neasures of cflic ieitcy

and effectieness can be made. In the narrow case. interest is in tlhe architecture specific infor-

imat ion because it allows the comparison of various algorithI imuplemuentations. This is important

in the cast, of parallel computer architectures, since an algorithut may be impl'mcnt ed in a vatn-

1-2

etv of ways, with the preferred iniplenrent ailon beinrg dletermin ied only after ex basu t ive em pi ricalI

test .irig. Clearly, this classificat ion scheme is not, excl usive y. :ince comiparisonis can be made across

imaplemenitat ions of algorithmis from wit hin the samre class.

1.1.2 Algorithmo CassSpotd A A Fcr- y nports three serial algorithimr

classes: 1) integer array -~ 't~s (with nine sort inrg algorithIms). 2) tree traversal, arid 3) dynamic tree

searching, with an implemnentat ion of the traveling salesrinan problem as air examiple algorithlmi. Vor

parallel architectuares, AA AllF provides a set of I11 animratiorns for performan~e mronrit oring of thre

Intel iPC2

1./.? 3 i 4noatiorr ~SupportI A AA F providles a broad spectruimi of'suipport for a Igori tIim inar-

mnat ion . As stated ab~ove, thre A AAR F enid User irit rface, is windo(1w based arid mr ouse dIrivyen . Tlresi

kindrs of iit erfaces are gerrericly referred to as Graphical User Interfaces. or GUIs. lTre AAAIF

GI providebs for the display of run li ple vi ews of algorithms as well as thre s-irn Itilaneous- dlisplay

of runltiple algori thmns. The abi lityv to saive arid restore the currerrt conrfiguirat ion is also p)rovidedl

along wvit Ii ain aniniat ion record capabuility for playback at a later time. A full rainge of algorit bra

avdc oI err igrirat ion control facilities are also 1)rovidlod , such as variable speed conitrol, bureak po1int

selectors, view configuirat ions, et~c [6]. Thre clierir-prograirirer minterface is a rigid. paramreterizedl

soft ware interface. It consists of a set. of predlefinedl functions which thre progranirwir "fleshres out"

alIon g withI a collection of A AARP1,' library rorut~ines [5]. (1lienrt programiners (d0 riot add graphics

tthiri rcorlprirer p~rogramls. Instead, t hey design a set of algorittirn (or clas.s) speci lic graphics

rout ines which are t hien adlded to AAA Ri 1's di;, play faci~i~ties. 'These ront nes are called inn respoiose

to a tinier which controls thre arnimat ion by periodically quieryinig lie algoritlini for ,... xtI IF.

1. I.j 1, I/nc '1A AA RI? l)r(qn '[Ire A AA IU fl-sigii is t hat ocf rirnltipl-. coopermit irrý prc'ccss,

[1:]i which coinininiricate via Unix sockets [21]. lIre adlvaritage of t his corifignrrir cn is that~n it is

not nece'-sary for the dhisplay p~rocess to be on the same rnach*Kme as thre algorithr nu Iing ;rrrrniatecl

1-3

This is exactly the technique used to animate algorithms running on parallel archlitectures. Tle

disadvantage, of course, is that it is necessarily more complicated, and fragile.

1.1.5 AAARF History AAARF was designed and implemented as an animation system

for serial processes by Fife [4] in 1988-1989. It, was extended by Williams [29] in 1989-1991 to

include animations for parallel performance analysis and parallel algorithms on the Intel iPSC/2

Hypercube. M.D. Lack [13] further extended AAARF during 1990 - 1991 by a(dling an expert

system advisor and additional iPSC/2 animations. AAARF contains between 15,000 and 20.000

lines of source code. The entire system, compiled and uncompressed, occupies 25 niegabytes of disk

space.

1.2 Problem

The orignal intent for AAARF was to provide a platform for algorithm research. This has

never really transpired, for several reasons. First. and foremost was a lack of available workstatiii1s.

This problem has recently been addressed with the purchase of some forty Sun Sparcstation2s for

use by the general AFIT engineering student, body. Since these workstations run Openwindows,

new students are indoctrinated into the Openwindows environment, and are therefore unfamiliar

with Sunview.

The original AAARF design was done using modern object-oriented techniques [4:36-46].

This design is still valid: indeed, as the capabilities of modern workstations have expanded, it, has

act (ually become more relevant. (This is a rare tphenomnenon in the world of computers and computer

software!) Certain facets of the design's implement at ion, however, have become outdated. These

are outlined below.

1.2,1 Outdated GUI The original AAARF system's wind(ow and mouse driven interface

was written in C and use(d the SunView [25] windowing environment. Sun has replaced SunView

1-1

with OpenWindows (an X Window System based GUI). Open\Win(dows follows the OpenLookT'

protocol, which supports the messy desk environment.. This environiient is riuch less rigid than

the SunView environment. However, the overwhelming consideration is that the SiiView and

OpenWindows environments operate independently of one another. This resuilts in two separate,

incompatible window managers trying to manage a single screen. For example, SujnView windows

cannot be moved forward or backward of OpenWindows windows, and vice-versa, [)ecallse the two

window managers are not aware of each other, much less each others windows. Furthermore, Sun

has indicated that support for SunView will soon be phase(] out. further emphasizing the need to

update AAARF. All of this adds up to a system that, has an unfamiliar interface, and is difficult

to use, especially for new users who have no previous experinence with SuinView.

1.2.2 Parallel Algorithm and Performance Animation Using AAARI" in the parallel per-

formance mode is best, described as difficult. This sterns partly from the outdated Sunview GUI

system discussed above, and partly from the inherent fragility of a systemu composed of multiple

processes communicating over a network. There is also a definite lack of quality documentation for

the instrumentation process. AAARF needs to be made easier to use in this mode to make it niore

useful as a parallel algorithm analysis and debugging tool. It, is easy for experienced programmers

to lose sight. of fact that many users are naive and do riot experiment - they learn how to do some-

thing one way and never consider or explore alternativws. With AAARF's current (onfiguiration,

such an approach is simply not possible. lUsers mustl be creative and determnined or they will have

a difficult time with AAARF when animating parallel algorithms.

1.2.3 Parallel Architcrtures AAARF currently supports tlie Intel iPSC/2 llypercube for

parallel algorithm animation. This architecture is being phased out and support will be discontinued

at the end of calander year 1992. A FIT has access to other parallel architect ures. inost not ably the

i(SC /860. It will he necessary to add tile iPSC/860 to tile list of parallMl machines supported by

A AA I? F.

1-5

1.3 Scope

For AAARF to truly become what its designers had envisioned, it will be necessary t.o make

AAARF easier to use and more reliable, particularly ill the case of paralH algorithnl animation.

The intent is to evaluate AAARF's current comnmnications protocols, with the goal of removing

any reliance AAARF places on the user for providing run time configuration information. In part.

to satisfy the above requirements, and to make AAARF more readily available, il will be necessary

to replace the current SunView based GUI with a new, X based GUI. The goal is a new X based

AAARF which is a•s reliable a.s the current configuration, easier for the end-user to use, and with

a simpler client, progranlmer interface.

The problems outlined previously in Section 1,2.1 regarding AAARF's G U! are not yet critical,

which is precisely why now is an appropriate time to addre8s them. As stated earlier, AAARF is

quite large, and growing larger with each thesis cycle.. The task of replacing the GUI is within

the scope of one thesis cycle, providing certain restrictiot•s are given due consideration. These are

discussed in detail later in the report, but center around how much of the core event-handling

structure must be modified, and or replaced, to accommodate the new GUI. If the core event

handling structure cannot be maintained, it. may then be necessary to completely rewrite AAARF

- which is clearly beyond the scope of one thesis cycle. (A prototype AAARF with an X based

GUI was done by Williams in Jan-Feb 1991 and extended by Lack [13] in late 1991. Results are

discussed in Chapter IV).

1..• Assumplzons

Currently, AAARF is primarily used as an analysis and debugging tool for programs written

for the iPSC/2 Hypercube. Since the problem of workstation availability has eased, it is expected

that the use of AAARF a.s an instructional aid will increa.se significantly during the TleXt year. Fur-

thermore, AFIT appears to have standardized on the Sml Sparcstalion platform •L• the engineering

1-6

workstation of choice. It is expected that, the user community will remain AFIT for the foreseeable,

future, which means that portability is currently not a major issue.

1.5 Overniew

This investigation is divided into three parts:

1. Part 1 is a requirements analysis, including a review of current literature, with emphasis on
parallel algorithm animation and parallel program performance analysis. This is presented in
Chapter II.

2. Part 2 is an analysis of AAARF to determine what steps can be taken to simplify the use of
AAARF before the GUI replacement phase begins. This is necessary for two reasons: 1) to
provide a simpler to use platform for students using AAARF in support, of research, and 2)
to provide a stable platform, not subject to constant change, while phase 3 is underway. This
is Chapter III.

3. Part 3 is a rewrite of the AAARF GUI. Phase 3 starts with an analysis of currently available
GUI systems and their attractiveness to AAARF. This is followed by a detailed discussion
outlining the motivations for choosing XView. Part 3 is presented in Chapter IV.

1.6 Summary

The goal of this thesis effort is to make AAARF a more stable and easier to use platform for

algorithm animation. The following chapters chronicle the changes made to AAA1F to enhance

its usefulness as an educational, and analysis and debugging tool.

1-7

HI. Requitrmcncts Analysis

2.1 Introduction

The goal in requirements analysis is to decide what is to be done. As is usually the case in

an academic environment, there is more to do than the allotted time allows. With this in mind it

is necessary to prioritize the list of potential tasks and choose those which satisfy the immediate

needs of AAARF within the time allotted. Chapter 11 starts with an analysis of the status of

AAARF prior to the start of this thesis cycle. Next is a summary of candidate tasks, presenting

and justifying what was chosen, followed by a current literature review. Chapter II finishes with a

"formal" requirements statement.

2.2 AAARF Status

As stated in Section 1.2, AAARF was designed using modern object-oriented techniques.

Both the design and the implementation remain valid. The implementation, while not object-

oriented, is modular and maintainable, and has robust, production code quality, error handling

facilities. There is good overview documentation, but there is a corresponding lack of detailed

implementation information. The source code contains marginal comments of the type typically

found in computer programs: they describe what a module does in general terms. but lack specific

information regarding how or why.

Because of its reliance on SunView, AAARF is not portable across architectures (recall from

Section 1.1.4 that, AAARF can animate processes running on other architectures). AAARIF is a

multi-process system. This complicates serious error detection an(l recovery, and it also coniplicates

analysis and debugging. The network and inter-process connection scheme used for animating

parallel (iPSC/2) programs is very fragile (this is covered in detail in Chapter 11. see Figure 3.1.

page 3-4). The process for running animated parallel programs is strictly scripted and cannot

be deviated from. Running AAARF successfully requires an above-average- knowledge of 1'nix,

2-1

especially if errors occur. For the client-prograniner, extensive knowledge of C', file descriptors,

Unix Sockets and, especially, the Unix make facility are necessary. Obviously. there is a lige

learning curve. (In all fairness, AAARF is a very well written system. AAARF was written by two

programmers who have well above average programming capabilities. As a result, AAARF contains

coding techniques, and makes use of Unix facilities, which would not normally be found in graduate

thesis code.) The learning curve, combined with a lack of quality documeintation, forces potential

users to rely heavily on the local AAARF expert. As expected, this can put a serious strain on

that resource. Perhaps the single largest problem is that of adding a new class to AAARF. The

prospective client programmer must know C, the Unix make facility, and he/she mIlust. understand

enough about AAARF to know where to look for direction. UInfortunately, this task is beyond

what can normally be expected during a quarter. This single factor, above all others, has limited

the spread of AAARF.

At the beginning of this investigation, AAARF was available on six workstations, two Sun3s

and four Sun4s. There was, however, no fully functional, running version of AAARF. There are two

reasons why this happened: the first has to do with the manner in which AAARF is maintained: the

second has to do with the instability of the workstation environment at AFIT. In the first case, the

only copy of AAARF available is maintained by the local AAARF expert (the individual chosen to

have AAARF as his thesis topic) somewhere off of his login directory. These individuals typically

have multiple copies (with no supporting documentation as to their respective states), some, none,

or all of which could be usable at any given point in time. The second reason revolves around the

constant changes in the workstation environment.. These changes are primarily due to a shortage

of mass storage space. Users are moved about from one file server partition to another by the

system administrators, as dictated by space requirements. Since AAARF is run-tinie dependent

upon certain path information contained in files, such a move can render AAARF unusable until

this information is updated. For the experienced AAARI expert, this is only an annoyance. ["or

the naive AAARF user, this is just enough of a problem to cause them to stop using AAARF.

2-2

Operating system upgrades, window system upgrades, networking changes, and the like also pose

occasional problems as well. For a combination of the reasons stated above, there were actually

three copies of AAARF available at the beginning of this investigation, none of which were fully

functional.

2.3 Summary of Candidate Tasks

A number of opportunities exist for enhancing and extending the capabilities of the AAARF:

"* Make AAARF a single-copy multi-user platform.

"* Improve the client-programmer interface by sinmplifying it. and providing detailed documen-
tation with appropriate examples.

"• Perform a capability analysis of existing animation packages for parallel architectures. The
purpose here is to provide direction, prevent duplication, and uncover potential dead ends.

"* Extend the capabilities of the current expert advisor.

"* Provide a GUI interface to the expert advisor.

"* Replace the SunView GUI.

"* Port the parallel instrumentation facilities to the iPS(C/860

"* Add sound generation to the animation facility. This will require an analysis of the current
state of the art and its potential application to AAARF.

Before work on the chosen tasks can begin, it is necessary to make the current AAARF

system functional. Because item 2 above is considered a relatively straightforward task, it is done

in conjunction with this step. Selection of the remaining tasks will be done in parallel with the

above task. The selection criteria are listed in order of importance below:

"* Maintaining AAARF in a stable condition,

"* EnhancinIg the attractiveness and ease of using AAAtRF.

"* Improving the functionality of AAARF,

"* Extending the capabilities of AAARF.

2-3

The single overriding factor in choosing which tasks to mursue is the need to keep AAARFI

running and available for future students and AAARIF researchers. Obviously. consideration must

be given to those tasks which. if ignored or postponeid. pose thei most immediate thrreat to the

stability of AAARF. Once the stability of AAA HF has been ensured, attention can he focused

on improving the client-programmer interface. Two tasks meet the stability test: replacing the

SunView GII, and porting the parallel instrumentation facilities to the iltS('/S6O. These two are

considered the most important and art, the subject of this investigation. Since a current literature

review is part of any thesis effort. the capabilityv analysis is included by default A review of

currently available GOI systems applicable to AAARF is included as part of the (GUI replacement

task.

2.4 Summary of Current Knowledgr

Algorithm animation and program visualization are techniques of graphically representing

the execution of programs. Algorithm animation is a relatively new field in computer science.

The term program visualization is applied to the graphical representation of data generated by

programs. It aids users in understanding the data. especially data with complex strtictures and

inter-relationships. Program visualization techniques have been used effectively for many years

and are an integral part of many successfil software packages. Recent emphasis is in providing

users (programmers) with a set of standard interface rout ines for graphically representing prograti

execution results. Both algorithm aninmation and program visualization are, vital techniques because

htninans rely heavily on mental images for problem solving. While this review concent rat(s primarily

on algorithin animation, it must be noted that the animation of algoritlims relies heavily on program

visualization techniques, making it difficult to talk about one without considering the other.

The definition of algorithm animation is ahstract enough to allow Ihe inclusion of systems

which, at first glance, might not appear to he algorithm animation syvstems. Because tiiis is best

2-1

illutst rated by example, two systemls, the Visual P~rogrammners Workbh rch and~ th liVXisualizationl

and~ Inrteractivye Programminirg Support syst em. are Inicl uded in then review.

lThe review that follows first explores several relpresent at ive algorithmi i an ima t ion s\Sttemls

to give thle reader insight into the focus and dlirect ion of cuirrent research arid how stich syst en is

are emlployedl. The next sect ion explores animiat ion systems antI/or techniques specific to parallel

comiputer architectutres. Finally, the last sect ion discuisses salient issueIs coirirrionl to all1 parallel

algorithmi animation systems, incluiding the adldition of aural cues andi inst rinnent at ion issueIs.

2.4. 1 A nimation Sysiscins - A Sanmpling of R~pzrsntathrr Srjsfc (n Recent minterest has

ceiitered around simiplifying the use of algorithmn animation systenis to make then imrore generally

accessible to noni-expert or casuial users. This stimulates the use of these systeims andl promiotes thle

application of these tools to algorithm dlesign anid analysis. Several recent ly described syst enis are

discussed with the intent of giving the reader a general feel for the state of the art. as wvell as sonme

indicat ion of the tdirect ion that futitire algorith Iianaitmat ion research might take.

2.4.1.1 TANGO - TIrans,1,on-bascd A .iinalion GcnrcratiOn MIost algoritlint arnima-

tion facilities require users to design t heir own aniniat ions using the graphics libraries on the host

system. This call be (arnd usually is) a daunt inrg task. Perhaps the miost imnport ant aspect of

encouraging more general use of algorithmi aninmat ion systems is to free tusers front the lbtrden of

developing t heir own ani mat ions [20]. TA NGO is an an imat ion facility t hat at terupts toreiv

programmers of t his burdren . TANGO) is biuilt onl a framework which allows uiser." to develop so-

phist icated. real t ime animations withbout low-level graphics codinig [20: 1]. Th'lis is accomnpl ished by

abstracting the animnat ion port ion fromr thle program being animiated. A simuple but powerful set of

(hat a st rmict tires and~ operat ions allows t he programimner to interface, wit hIi hle arnimal~i ion package and

to associate evenits or act ions in the programn withI thle location arid imovemieint of graphic entitie's

on lie screen. The pat h-t ransit ion paradligmr [20:2] provides a miechatnismi for displaying Ilie fluid

1VInoVeIniet of graphic entities duiing state changes. TANGO(cain also be used to antimrate paral-

lei algorithms since it provides the capability to drive a single aninmation from multiple executing

processes. TANGO is an X11 based application and runs on Sun and(DEC workstations.

2.4.1.2 VIPS - Visualtzaton and Interacteic Programming Support VIPS is a graph-

ical extension to UNIX's symbolic debugger, DBX. It is a linked list visualization tool for debugging.

It can dynamically display linked list structures, portions of linked lists, and the fundamental (un-

derlying) structure of large, complex linked lists [19:4-5]. It also has the ability to identify which

nodes are changing location or contents during execution. While VIlS is not intended to be an

algorithm animation facility, it is a good example of how program visualization techniques can

provide valuable insight into the operations of computer programs. The graphics facilities and

debugging capabilities of VIPS would be a valuable addition to any algorithm animation package.

2._41.3 GAIGS - Generalized Algorithm lllustration through Graphical Softwarc

GAIGS is an instructional system used for classroom support. The motivation behind GAIGS

is to relieve students of the burden of the graphics programming so that they can concentrate on

drawing conceptual conclusions from the results of their algorithm programming efforts [15:105].

GAIGS distinguishes between an algorithm's implementation, which is any program that results

in the execution of the algorithm, and its visualization which is a sequence of graphic snapshots

that represent the algorithm's operation upon data structures [15:106]. GAIGS is a library of an-

imations for specific algorithms which are frequently taught in computer science courses. GAIGS

reads a text file of animation commands generated by the users program and translates them into

the appropriate graphics for animation. No knowledge of graphics programming is required on the

part of the user. GAIGS is a static animator in that it can only show the effect of lthe algorithum's

execution upon data structures; it cannot show state transitions or events. Any language capable

of generating text files which follow the GAIGS protocol can make use of GAIGS. GAIGS is not

a real time animation system since the algorithms must first be run to generate the input file for

(;AI(,S.

2-6

2.4.1.4 VPIV - The Visual Programnmec.irs Workbench Visual programming languages

use graphical means for representing program objects and allow these objects to be arranged on the

screen in a two dimensional way [28]. TFile next, logical step is an environment for the construct ion

of visual programming languages. VPW is such an environment [18]. The VI\V environmient

consists of the following types of specifications: the syntactic structure, the abstract structure.

the static semantics and the dynamic semantics [18:553]. The syntactic structure specifies the

visual appearance and structure of the language. The abstract structurie defines a niod(el of lhe

language's structure. The static sernantics specify the static properties of the language (for exaiiple.

type checking) while the dynamic semantics describe the execution properties. Using these four

specifications it is possible to completely describe and inmplement a visual progranminig language.

VPW is not an algorithm animation facility; VPW uses graphical objects to construct algorithms

rather than graphically depicting the execution of algorithnms. However, since VlMW provides a

"built in" mapping of graphical objects to executable code, it can function as an algorithm animator.

In this regard, VPW (and other visual programming languages in general) is a very powerful tool

because it is very easy to make program changes an(d observe the consequences.

2.4.2 Parallel Performance Anitmation Systems and T'chniques The performance of par-

allel algorithms is heavily dependent upon both the method used to partition the algorithli for

execution, and the target machine architecture. For these reasons, the primary use of animation

in parallel computers is performance animation rather than actial algorithm anitnation. The tech-

nique of animating algorithms, that of instrumenting the source code and animating events. is

readily adapted to parallel performance tnonitoring. Examples of typical events are the sending

and receiving of messages, locking and unlocking of shared resources, etc. The fact that the saiie

techniques used to monitor and measure the efficiency and effectiveness of algorithtis executing

on sequential processors can be app!ied to the performance of algorithms execuling on parallel

processors is extremely important: one animation system suffices. (Hemember that on parallel

2-7

architectures the interest is usually on hoo an algorithm is partitioned for execution and not irhir h

algorithm is being used.)

A detailed state-of-the-arn analysis of performance and animation systems was done by Lack

[13] in '91. Many of the systems reported on by Lack were architecture and/or application specific.

Recent emphasis focuses on portability for the animation systems and standards for the instrumen-

tation trace data. For this reason, only those systems which havw. demonstrated portability and/or

have been adopted as a quasi standard by the research community are reported on here. The fol-

lowing sections give an overview of these systems in moderate detail including several new entries

in the field. Also included are several research effort~s which are currently using these systems.

This section concludes with a discussion of general trends in parallel performance and algorithm

animation.

.4..2.1 PICL - Portable Instrumented Communication Library PICL is a portable

instrumented communication library designed to provide portability, ease of programming, and

execution tracing in parallel programs [8]. Obviously, PICL is not. a animation system. Since

all animation systems require some form of trace data, it. is included here as a representative of

the class of programs which collect, data for performance analysis purposes. PICL was initially

developed as a portable communicat ions library for distributed memory parallel multi-processors.

The library consists of 12 low-level communications and system interface routines, and 1.1 high-level

routines which implement commonly used parallel architecture functions (global broadcast, barrier

synchronization, etc.). Eventually, execution tracing facilities were added. It. is the execution

tracing facilities which are of interest. There are 9 execution tracing routines. An interesting

aspect of the PICT trace facilities is that users can specify the level of observation to use in

monitoring execution, and they can change the level during execution. The obvious advantage is

that monitoring can be tailored to focus on specific areas of interest. PI(C,'s moniloring facilities

generate two types of trace data: an augmented format to enhance huiman readibility, and a compact

2-8

forniat inltendled for use with the ParaGraph [9] algori thin anid rat ron syst err . lII addlitiorn, Pl(IC

allows uisers to definie "task" specific t~race records which carn he used to logically riiar, wier, III

the programi particular behavior(s) occur.

2.4.2.2 ParaGraph WithI 25 predefined perforrniarce arinirat ions, ParaGraphi is eas-

ily the mrost "comprehensive" parallel performance anintatiorm systemi availahle. ParaGraph 'is a

portable, post processing systemi. Paragraph gets It's portability froin PI1CT. t he source for it's

trace dlata, and X Windows, it's GUI system. ParaGraph runs on both color arid mronrochrorme

(displays, hut thle animations are most informative when viewedl in color. ParaGraph uses marny

of the saine display formiats as AAARF (such as Gantt, Animiat~ion, Kiviat. tlime-space or IVeyn-

nitan r tinessage and coninninications load, etc.). ParaGraph also p~rovidIes several dlisplays which

are, currently not imiplemnitited inI A AART , one is a variat~ion on t~he space-time plot, which shows

the longest serial thread running through the execution and the other two are phase plots which

show the, relationship over time between coxmnctosand processor vise [9-.371.

A very interesting aspect, of Para(ýraph are the "task" displays. While thre standard displays

are iiiforinat ive and useful, they contain no i nforrnation about where in thre programn the events

are occurring. This is partially solved by allowving users t~o logically definre -tasks" by bracketing

specific sect ions of code withI the PRl'I task begin and en(I records andl assigning it, i task numiber.

Nuit 'rhrs treed riot he uniquc- to a processor, thits tasks can he spread over *nultilple p~rocessors

(which Is the essence of p~arallel processing anyway). There are several task dlisplays. III thecse

dlisplays. eaclt t~ask is assigned a different, color. t hus allowing users to see, whe~re in thle run sipecific

sect ions or I itis of code, are beinrg executled Threse dlisplays. when corubinied withI thre staridard

dlisplays. help providfe a more conrplete an(i accurate pict tire of prograirn exectit ionr

ParaGraph is extensible, allowing users to dleve'lop their own hperforniarrce displays: at ap-

propriat e points calls are rinade to uiser surppl ied rout ines for the inrrit ialiat ion da(lt a Inpurt , event

L~arrdlng, and drawing of application specific animiations r9 :38.

2-9

Paragraph is rnot anl algorithm~ animation Systeml, alth lioigl t here, Is nothiung InI the design ~f

Para(rapli to preclude this. Thbe p)robleni is act ually withI P1(1,: t here is no0 formial iiiecliaiisili

to allow use.rs to define their own trace record formats. which would Le necess~ary for algorit Inn

an imat ion. B~oth svst em., are dist ri biied with soiurce code. so it seems li kelyv that Para(irap~h

comin)iied with P1(71 and the necessary modlificat ions to hoth Ii l(01(produce an algorithml aniiImat iOu

svst emi.

24./.2. 3 [15 L - tis ualil~alzol anda Insirunn 0(a ion of Scalabh 01 aT Lornip n UrApp,

cations VISTA I not. anl animation svstemi, rat her it Is ;Il instrumlentat ion and visitalizati mu

1aradigin [3:1] initend~edl to Solve lie scalability p~roblem inhereiit. liti most p~erformatice aniimat ion

syvst enis. rht, v is'fA t),aradign i treats j)erforifalice dat- essent ially the saume as dlist ributed dat a

In thle context of the programming modlels uisedI for p~arallel prograiiiini g. Thiis amounint s to (lat a-

parallel majpping of program onto mach ine anid allows thle p~erformance to be viewed as it relates to

each p~rocefssor, p~rocessor cluster, or the processor eIS(nsemlet and as it retates, to ble dat a s.,Irictiires-

of tlie p~rogram [3: 1].

T[he VISTA liaradligm is comp)ose(I of thiree comnpornents, Visualization, D ata Parallel l~cpre,-

sent at ion, and~ Performance Mleasuremnt ,9. Of)a rt cii a r intecrest is the Visuial izat ioul coitiponent

T[he Ibasis for the Visualizat ion coni l)oficnt is the state of a Processinrg Eloiient (PEI), wihich t ranls-

lat es to one- or miore quantitative met rics N (a scaler. cit her mneasu red or calculated. t his is formalized

by (lie Performance Mfeastiremnvit co)mponent). The visual izat ion Coniponent Is divided into foiir

levels:

"* mitcroscopic snapshot A p~erformanice paraicteter A- at sonio sp~ecific tinme oni a p)art icinlar
processor.

"* Microscop)ic profile A ulicroscopilc snal)sliot which allows A' to vary over t ime. Ati A AARIFI
or fParaGrapli style single p)rocessor (hisldlay.

"* macroscopic snapshiot A nim'roscop~ic snapishot of all P Vs at a spevcific time for au part icui a r
K. Thuis forms a two dimiensional mapp[ing amid is essent allY the samie iIdea used by A AA I? '

amid lPara(; rap~h for iun t ilprocessor disp~lays.

"* macroscopic profile A miacroscop~ic snap~shot allowing A' to va ry over t i rime.

'2- 10

Tht- four levels are referred to as Machine Views, anld are instances of a general class of nIiuII ivariat w

data plots tailored to display performance measurement data [3:5] . Macroscopic views correspond

to images, thus image analysis and multivariate statistical analysis techni iques arfl used for inter-

preting the data [3:6]. This sounds rather sophisticated, biut in reality, many of the performance

vies provided by systems like AAARF and ParaGraph satisfy the "'imageo label.

The VISTA paradigm has been implemented on an nCITBE2 using the Pl(1L-lParaGraph [8, 9]

system and on a MasPar NIP-1 using the MasPar Programming Environnient's Machine Visualizer

W\indow [14]. Both animation systems have been extended to satisfy the macroscopic profile level

of the VISTA visualization component. Several other visualization systenis are mentioned, but no

indication is given at to whether VISTA has been implemented using these systems.

VISTA exceeds the capabilities of current, an imation systems because the hierarchical levels

of the Visualization Component scale up well beyond the 128-256 processor upper limit typically

found in parallel performance visualization and animation systems, B3y looking at clusters and

ensembles of processors as individual units, while still maintaining the ability to "look closely"

with microscopic views at individual processors, the VISTA paradigm is tihe first performance

animation system that is truly scalable.

2.4.2.4 Scepltr Seeplex is a real time parallel computer performance monitoring

system to help programmers load balance an algorithm. Load balancing, a technique of dist ribut ing

an algorithm's components in a parallel computer for maxiniunm efficiency, is a commiion prollem

in developing parallel applications. and can often only be done empirically [9]. Seeplex, which

runs only on the NC IBE parallel computer, gets it's data from the Simplex operating systelli,

which has extensive instrumentation for performance monitoring. Seeplex provides an extensive

and very flexible set of icon based tools which allows users to easily constriict various views of

system performance. Seeplex can be configured to monitor typical parallel computor performance

2-11

criteria (message traffic and message queues, node state information, etc.). The information displays

generated by Seeplex are very similar to those produced by AAARF.

2.4.2.5 Los Alamos National Laboratory Hotchkiss and \Vanipler [11] have (level-

oped an algorithm auralization system. The premise for their work is that within as little as five

years animation systems will not be capable of conveying the amount of information generated by

massively parallel computers.

To date the authors have concentrated on auralizing mathematical functions, such as y = xn

and f(t) = t + sin(wt). The authors use three basic parameters. frequency, amplitude, and time,

to represent various situations which arise in evaluating mathematical functions. An interesting

aspect of the authors work is that they make use of a variety musical instruments via a Yamaha

synthesizer.

They have produced some very intriguing results:

Chaotic functions such as the bifurcating function x(i + 1) * x(i)r, when reiterated to conver-

gence, clearly conveys the converged functional behavior as well as the chaos where convergence

does not occur ... we have discovered that, audibilized mathematical functions can create sounds

that no man has ever heard before and truly excite ecn the non-musical mind.

Clearly, the use of sound to represent execution events or trends presents some interesting

possibilities, especially when combined with animations. The authors freely admit, however, that

defining what constitutes "good" performance or "accurate" results in terms of sounds is extremnely

difficult.

2.4.2.6 Trends in. Parallel Performance Animation Current research in parallel per-

forrmance animation is focused in two critical areas: visualization/animation techniques for inas-

sively parallel machines, and development of an execution trace standard or standards. Also. as

the number of processing elements continues to grow. the amount, of trace data generated grows

2-12

accordingly. Nearly all animation systems operate offline, so mass storage space while the trace

data is being generated is also a problem. This, too. is related to trace standards, since any stan-

dard must compact trace data as much as possible. There appears to be little or no attention

given to real time animation. The general consensus seems to be that comnmuications and graph-

ims processing bandwiths will never be wide enough to allow for real time animation of i,,a,,i•el

parallel computers. Obviously, humans are incapable of processing information quickly enough to

make real time perforrnanc(animation practical. However, real time algorilhm animation is feasible

and is something that has escaped scrutiny by the research community. For very large computer

problems, such as the Grand Challenge problems, interactive real time control of the search process

could be very useful in bounding the search space and significantly speeding up the search as well as

potentially producing better solutions. Of course, until the communications and graphics bandwit h

problems are solved, this is just fringe thinking.

Francioni and Rover in [7] discuss the use of sound to relieve the problem of high density

graphics when performance animating programs for massively parallel machines. The technique

employed involves mapping one or more of the visual performance parameters to an aural based

representation. The conclusion is that aural cues can enhance the speed of recognition and dis-

tinction of whole and partial programs [7:431]. It is not clear, however, that aural cues scale, or

scale as well as visual cues since aural processing in humans is not as ettiecient as visual processing.

Nevert heless. it seems safe to conclude that a combination of visual and aural cues is more effective

than either alone.

There are, of course, other issues. The effect of inst rumentation on timing is always a concern.

"To date, the method of instruimentation varies widely from hardware sipport. to OS support. to

intercepting function calls. All have advantages and disadvantages: trace files gnerated at the

hardware or OS level are less intrusive but lack flexibility. while intercepting fiunction calls usual]'.

requires modification of the source code, but is very flexible. Most massively parallel machine

2-13

vendors recognize the need for execution tracing and are built inI support at one or more levels.

For example, Intel's new Paragon machine covers both ends of the spectrum: they are providing

hardware support if the form of a dedicated on board instrumentation processor running in parallel

and software support by including (unsupported) the PICL-Para.Graph system of performance

monitoring.

"2.4.3 Conclusion The above reviews give a fair picture of the state of the art of algo-

rithm animation and its applications. All of the systems are primarily research platforms. To my

knowledge, no commercial system is available, although all of the systems reviewed are available

to interested researchers. Several of the reviewed systems, such as Paragraph. and PICL are being

incorporated into the operating systems of some of the new massively parallel machines. For exam-

ple, Intel is including both Paragraph and PICL in its OSF operating system for the new Paragon

massively parallel machine.

Much research still needs to be done. For example, there has been very little work done in

studying how best to represent and display conceptualizations and other non-graphical information

on computer screens. This is because the emphasis has been in building prototypes to demonstrate

feasibility. The translation of algorithms into graphics, and its compliment, are not independent of

the semantics of the problem being solved. This can make automating the process very difficult. If

the development of algorithm animation systems continues to follow the general trend in computer

software development, many point solutions will be demonstrated before a more general approach

is adopted. Obviously, a truly useful programming environment, would contain aspects of all of the

reviewed systems.

2.4.4 XWzndows (WII Syslcms This section is a brief description of each of the GVI

systems available for the Sun Sparcstations. It is not a complete list and does not include, most

2-t1

notably, user interface design tools.' It is assumed that the reader is famiiliar with the X Window

System. If this is not the case, Appendix A contains a b)rief description of X with references.

Detailed analysis of each GUI system can be found in Chap er 3. Widget is user interface parlance

for object.

"* OLIT is the OPEN LOOKR Intrinsics Toolkit. It. is Sun's and AT&T's inilAemental.ion of
the OpenLook GUI Standard [27]. It provides a robust, extensible set of predefined widgets.
It is built on top of the Xt Intrinsics toolkit and Xlib.

"* OSF/Motif Mf is the Open Software FoundationTA! (OSF) graphical user interface design
toolkit [16]. Like OLIT, Motif provides a large set of commonly used, predefined. and exten-
sible widgets. It is also built on top of the Xt Intrinsics toolkit and Xlib.

"* Athena is the X Consortium's widget set. It follows no particular GUI standard. The widget
set is considered weak in comparison to OpenWindows and Motif. Athena was originally
developed in response to user complaints that a widget, set. was not. included as part of the X
distribution package.

"* XView is Sun's attempt to provide backward compatibility to the large number of SunView
applications that are still around (such as AAARF) [1O:xxxiii]. The object set, is not as robust
as either Motif or OLIT. XView's main attraction is that it. transparently supports (most)
SunView calls. XView is, with a few minor exceptions, OPEN LOOK compliant. [10:669-673].

"* Xt Intrinsics provides the basic user interface components from which most other user inter-
face objects (widgets) are constructed [31:141. It is generally considered too low level for user
interface design. Xt is not evaluated in Chapter IV as a candidate GUI.

"• Xib is not. really a GUI at. all. Rather, it, is the C language interface to the XWindows
protocol (there is only one). It is too complex and too low level for serious consideration as a
GUI language. All of the above systems, at one level or another, are implemented with Xlib.
Xlib is not evaluated in Chapter IV as a candidate GUI.

2.5 Requirements

2.5.1 GUI Requirt, .nts This section present.s a formal statement of the requirements

which were used to make the final selection of tile GUI system to be used for thl SunView GUI

replacement task. These are only the requirements. A delailed discussion of the pros an(l cons

of each GUI as they relate to the requirements is presented in Chapter IV. Each of the require-

ments categories is listed with its corresponding rating, followed by the criteria used to derive the

requirement(s).

1t ser interface design tools allow for the automatic construction of user interfaces using, typically, one of the
I ;I I anguages described above. They are. in effect, a graphical nser interface for the construction of (JITs. These

are useful in constructing user interfaces for new systems, but are not particularly useful in the case of AAAIRV.

2-15

"* Target User Group -- AFIT student body
The target user group is divided into two cat egories: AFIT st udIents using A AA.XH as an

educational tool in support of classroom assiglnmenlts. and A FIT sitident s usinig A A ARI as

an analysis and debuigging tool in support of research. Of the two, the(later Is More ('0111ii0o1
For the foreseeable fututre, the p~rimlary users are likelyN to be A FIT stuideiits.

"* User Frienidliness -End U1ser: hligh, ('Iient-P'rograniiiier: High
Fronti and end-user perspectiv~e. how inituitive(are the Int erface objects, are their fu nctions
obv-ious, or is extensive t raining required? For the client-prograniiner, how good is the soft -

ware int-erf-ice, are data easy to get into and otut of the object s, and is the ob)ject st ructuiire
clearlv defined' Is the needed functionality. av.ailable as iu object, or imust it be, bmilt fromu
lower level constructs?

"* Compatibility with the -Nornial Workstation Enivironmient D~esirable
Will the GU'I run under the Open Wi n(ows envi ronmient, or wvil IIt he nvecessarv- to(swi t ch

ic. m OpenX~indows t~o some other window manager" If it is necessary to swit ch from Openi-
Windows, how foreign will it appear to students fanmiiliar with Open Wintdows anid wvill the
necessity to change limnit its use'?

"* Availability NecessarN
Is thie GUI uinder consideration available for the Sparest ation2 and is there a cost andl/or
licensing fee associated with it'?

"* Reliability - Necessary
What is this GIl's reputation for reliability-, how oft en is it revised or uipda ted. who is the(
Nendlor andl what is their reput ation'? What is their relationship to Stn'?

"* Portability - D~esirable
Is this system portable to other architecturie's'? I' so. what are, tilte Cost andt lcensiing ilssues.,
and will it require changes to the basic AA A H F' design'.

"* Enihatteed Capabilities D~esirable
Will this GUI1 provide capabilities not av-ailable with SunView'?

"* Development Effort/Time, - Low
What is the effort involved in ap~plying it to A A ARF? Ilow long will it take to replace Ilie,

Sun View G('[using this software"? ('an it be predicted accurat ely"?

"* Procurement. Effort Low
What is the effort involved in procuring the soft ware'?

"* Procurement Time Short (already av-ailable preferred)
flow long will it take to get tlie(soft ware, aiid are there an%. special permiissions or waivers

requiiredI?

2.6 Summai~ryJ

First and foremost, the current Siin~iexv %ersioi miiust be miade ruimable, in thle cum~irei opor-

at hg Sv-steii andu windowing environmuenit . This is nece(ssar% for t wo reasons: first . to give si i(Ieuts

who wish to utse AAAHF' (huiring thle ciirreint thesis cNele a st able plat formi: sIcroni(. I provide a

benchmark against which the new .\A :\IR can be' measured lduring (levelopielit.

2- 1 G

III. AAAIRF Operational Alaintrnanc(

3.1 Introduction

The SunView version of AAARF requires maintenance (Section 2.3) before work can begin on

replacing the GUI. This is necessary for two reasons: to provide a stable platformn for current stu-

dents wishing to use AAARF in support of their research, and to provide a functioning benchmark

for comparison purposes during the GUI replacement phase. In support of these requirements,

Section 3.2 is a detailed investigation of known AAARF problems and weaknesses. The scope of

this investigation exceeds what is required to satisfy the stable platform and benchmark require-

ments. The motivation for the expanded scope is to provide a broad discussion which can serve

as both documentation and direction for future AAARF researchers. Recommended changes to

AAARF which satisfy the maintenance requirements specified above are presented in Section 3.3.

Section 3.4 is an analysis of the results of implementing those changes.

3.2 Problems with the AAARF System

AAARF's problems can be roughly divided into three categories:

I. problems that are generic or general in nature, e.g. not related to any particular featulre or
facet, of AAARF;

2. problems specific to the SunView windowing system;

:1. problems with remote animation, and in particular, the iPSC/2 llypercnbe.

Only the first and last, of these are included here, problems with the SunView windowing system

are deferred to Chapter IV, which discusses the GUI replacement.

.7. 2.1 AAA R F in (;Cae cral

:3.2.1.1 ('onfiqitration Control By today's software system size standards. AAAR F' is

not really a "large" system. However, when considered in the conlext of being the responsibility of

3- 1

a single individual, AAARF is indeed large. There are currently twenty directories direcily below

the main AAARF directory, about half of which contain AAARI' common code. The remaind(er

contain algorithm class code and examples. The entire system, compiled and linked occupies about

25 megabytes of disk space (including the source files). The recommended method for using AAA:X F

is for users t.o each have their own copy.' There are typically aroun(d 60 (&CS/(;(G E students at

any given time; allowing each to have their own copy then uses about 1.5 gigabytes of disk space.

Obviously, this is unacceptable.

Currently, AAARF is run out, of the current thesis student's directory. The danger with

this practice is that student directories are archived when students leave. These directories can be

restored, but, there are likely to be path or OS version problems, which can result in a great deal

of effort to get+ the software running again. It is exactly this practice which resulted in the current

situation of having multiple copies of AAARF on different file servers, none of which work properly.

Originally, AAA RF was intended to be a single copy, multiple-user system. With the additiotl

of the parallel animation facilities, it. became "easier" to treat AAAIl as a multi-copy, multi-user

system. At the time this was not a problem because of the scarcity of workstations. Now that

large numbers of workstations are widely available, it is no longer practical for each user to have

their own copy of AAARF. Aside from the obvious disk space isstie, configuration control is simply

not, possible in such an environment because the current AAARI" thesis student is responsible, for

AAARF and not the system administrator (as would normally be the case). This situation is

further complicated by the fact that AAARF should be resident on various file servers to satisfv

the needs of the general student body. Currently. this alone requires five copies be maintain on

various file servers throughout AFIT.

'This conclusion is somewhat ambiguous. There are no specific references regarding where 10 install A.AARF
in the user's manual or any of the three theses I reviewed. The onlv reference I (-,)II(tind was in the dist ri|la ion
HEADIME file which accompanies AAARHF. which states "... In order to compile AAARIF. yvon should do the
following: I. 'To make the job easier, the aaarf directory created by the tar tape should lie in a user's home direct ory.

3-2

AAAR F is quite "complicated," especially for inexperienced users. For each user to have Iheir

own copy requires AAARF be compiled somewhere off the users home directory. The instructions

for doing this are clear and concise, provided there are no problems during compilat ion. If problems

occur, recovery for the novice user is nearly impossible. The makAfilcs for AAAI F are very good

and very extensive. They are also quite unintelligible to anyone unfamiliar wit h the Unix makc[23]

facility. If the user intends to use AAARF for parallel algorithri animation, they must also have

the necessary data collection programs and libraries in a directory called aaarf olf of their login

directory on the Ilypercube. If the user wishes to run t he AAARF parallel classes for the Set

Covering Problem [29:Chapter 5] or the Shiel Sort [29:Appendix A]. these programs must also be

in their respective directories below the users login directory. ('learly it would be best if all this

were not an issue for the average user.

3.2.2 Parallcl ('omputOcr Pcrformancr Moniloring AAA I?'s ability to animate algoritlhmis

remotely over the network is responsible for some of it's most complicaled and challenging problems.

First, time users of AAARF instrumenting their algorit hms for iPS('/2 performance aninmat ion must

be prepared for a difficult time. The documentation for instrumenting an algorithii is incomplete

aid contains errors. There are no 'simple" examples to guide first time users, only complicated.

rather large, programs such as the shell sort anid the set covering problem. A number of the pitfalls

are described in the Sections 3.2.2.2 3.2.2.7. Before proceeding, however, it is necessary to explain

how AAARF is configured for remote animation.

1.2.2.1 Remotc Configuration For remote animation, AAARH is divided into two

systems, one which runs on the display workstation, and one which runs on the remote host.

For the purposes of this discussion we are concerned only with .,\AAAHF corninon processes, e.g.

networking and (data collection processes (see Figure 3.1). On the workstation side, this is the

process PRASEBG (networking) and on tlie remote host side. the processes scrrer (networking) and

aaorfclct (data collection). In this configuration. AAARF has two modes of operation: automatic

3-3:

Workstation Display arfHost Processor
I I iPSC/2 Hypercube

PPerf

V 1server 3000

Paetfork/execchd I

P wrent chile ad aloih sntpeet.''e algorithmmuthstremaal.

and~~~~~~~~~~~ m-ul -n -uoai md AI Ftrsthalgorithm 3ein0 atiaedand i mauamod

ligie user i. respokonnileeocsationg the algtoriatih Moditer I niode, PRAde .'lB starts t liek prora

sc rre r on thle remiote hjost Witl i lie I' nix rsh commnand. (rsh is the rtnitot e shell coiiniaiid rsh

Connedts to thle specified host namie and execiites the(specified foulinianmd[2l 1.)

Ini alit orliat ic mIode. the Class beinrg anim-tal ed providIes to IPIA SEII the(nanie or the algo-

it h in to run on the remtote host. 'fhis is tin turn passed to the .scrie r process as a commmnmand hI)Vn

arguimlient (via rsh), which in turn starts the algorit hiii. '['lie algorit hii beinig anjiiiated Is required

3- 1

to start the data collection program aaarf-clct. aaarf-clct then connects back over the network to

PRASEBG.

In manual mode, no algorithm name is provided to the servcr process. It is the responsibility

of the user to start the algorithm being animated as well as aaarf-clct.

3.2.2.2 User Requirements for Remote Connection As stated previously, AAARF

uses the Unix command rsh to connect to the remote system. For this to function properly, users

must have an account on the remote system and they must have a rhosts file in their logqn directory

[6:29]. Furthermore, they must define a shell variable, AAARFSYSTEM, on the remote system and

set it equal to the name of the workstation on which AAARF is running. The AAAIWFSYSTEM

variable is used by the remote data collection program aaarf-clct to determine with which worksta-

tion to connect. The problem with the AAARFSYSTEM variable is obvious, it must. be changed

each time the user changes workstations.

3.2.2.3 The Notifier Environment AAARF uses a blocking read on it's sockets.

The advantage with the blocking read is that it allows for very tight synchronization between

communicating processes, which in turn greatly simplifies programming. The disadvantage is that.

it makes error recovery correspondingly more difficult. The reason for this is somewhat subtle.

Most SunView window events cannot, be caught without using the Notifier (the Notifier

is basicly a software interrupt handler [26]). The disadvantage with this is that once the No-

tifier is incorporated into the software, all software interrupts should be channeled through the

Notifier[l0:457-468]. This is accomplished by having the Notifier provide wrappers to t he standard

Unix or C functions which would generate a software interrupt.. Consequently, the Notifier func-

tions as a filter for all software interrupts directed at, a process running under it's control, regardless

of their origin (window system server, window manager, keyboard, timers, pipes, sockets, signals,

etc.). The obvious advantage in using the Notifier is that it provides centralized control.

3-5

What all this means is that the default interrupt handlimng a~ssociatedl with a p~rocess is re-

moved, e.g. AC, no longer works when, for example, a process is blocked on a socket readl. Thlis

leads to perhaps the most frustrating problem witth thle current version of AAAIF. If a rca(I0 on

the socket communicating with the background process is issuedl lefore the b~ackground proce•ss

is fulily connected to the remote machine, the entire system freezes [6:30]. WVhen this occurs it is

usually necessary to login remotely and kill all AAARF processes. hothI on the display workstation

andl on the iPSC/2.

3.2.2.4 Hard Coded Socket Ids For comnmunications on the local workstation, AAAHF

allocates sockets dynamically before forking the child algorithm process (remember with Unix. child

processes inherit the parents file descriptors [24t]). This is not possible for remote aninmat ions be-

cause there is no way to guarantee that the corresponding socket identifier will be available on

thle remote host. Consequent ly. the socket. identifiers for remote animation are hard coded. If the

either the local workstation or the rem~ot~e host is ~using these ids, then AAAR F cannot be run ini

the remote animation mode. Changing these socket identifiers requires recoiupilat ion for 1)0th the

affected AAAR.F source files and libraries and the renmote data collection programms. Obviously.

choosing socket, ids which are not. likely to be in use is diffictilt atl best.

.2.2.2.,5 Configuration Fragility A typical AAARF inter-task communication network

for remote animation is shown in Figure 3.1. This configuration is very fragile becau~se any break

in the link may cause the display screen to lock up. Once locked, users must login remotely to

kill the offending process(es). The p~roblem with t his is very simple, but not at all obvious to the

novice ulser: the only process named AA A F is the main AA At{F process. Ewvery ot her p~rocess

has a name related to either the class being run, or it's respective function wit him AAA RF. If

AAAP F is killed, some of the background processes reniain alive, holding the sockets as resources

and preventing AAARF. or at. lea~st thait algorithm class, from being run again.

.3-ti

3.2.2.6 Detecting Remoeh Problems Detecting problemis (under program control)

once the server program is started on the remote host, is best described as difficult. Typical prob-

lemIs include incorrect paths for the class program to execute, and problems detecting aniy kind of

file system error (such as compressed data files). While these kinds of errors are usually detected

by the remote algorithm, AAARF has no facilities for passing this kind of information back over

the network to the workstation. Unix provides a pseudo facility as a byproduct of the r.sl and

fork/nea1c facilites. forked processes inherit their parents file descriptors, which means that any

printfO statements executed by the srrver or the remote algorithmu (assuming automatic mode)

should appear on the workstation in the window from which AAARF was launched. ihis is weak,

but it. works.

3.2.2.7 iPSC/2 Hypercube Node Program [ermination An interesting problem, which

was discovered during this intvestigation involves iPSC/2 node terimhation. If flhe node programs

are terminated with a killcube() command from the host process, rather than being allowed to

terminate 'naturally," the AAARF data collection process running on the host does not receive

the information required to generate the end of data message for A AA RF. As a result,, the animat ion

does not "finish" properly, and may in some cases result in abnormal termination of the animation

process itself.

Another problem involving node termination occurs when node I)rogramis use the C (J'2tz()

[121 function to terminate normal program execution. Although it is not documented in the users

guide, the erit() function is redefined to be praseexit() by the instrumentation software. (pros (ml()

is the function which sends tle end of dat~a message to AAARF.) This is hone in order to catch

those situations for which the programmer has inserted a call to erit() to terrminate processing

abiormally due to some predefined error condition. The recommended method for "-nornmal"' node

termination, as specified in the AAARF Programmer Guide [5:70-721, is to add the fminction call

3-7

prascendo (which also sends the end of data iiessage) to the end of the node main process. If thl"

author of the node program is using a call to exit() to termin nate tO:x node process, tlhen adding

the recommended call to prascendo results in multiple notifications of node termination beillg sent

to the data collection process on the host. The result is a comphletely locked screen, once again

requiring remote login to clear.

3.3 Rccommcndcd Changcs

3.3.1 AAARE in General

3.3. 1.1 ('onfiguration C,,(Irol For AAARF" to become a genorally available and use-

fiil software tool it must. be treated more formally as aii application program, with appropriate

configuration control, and less as a thesis studetit project. This requires that som omn olhfr than

th/ current thesis student be given responsibility for AAARF configuration management. Finding

an inlividuhal for this task is a complicated problem in an environment where there are so many

workstation clusters and file servers.

The (lefalilt. location for AAARF at, AFIT should be the fiue server olympus. The AAARFl

version kept there should be the baseline version and no changes to this version should be allowed

wit hout the permission of the olympus systeem adninistra•.or and the AAAIHII facult.y advisor.

Availability of AAARF beyo:wid olympus should be consid'red oii a case by case basis with the goal

of keeping the iiimher of copies of AAARF to a manageable minimum. This is the only way to

guarantee that a working version of AAARF is always available.

3.3.2 Pa rallcl Conipulcr P rformancr Moniloiing

1.3.2. 1 I's, r Rcquir(mints for Rcmot(Con necti'on he problem of making AAARF

a single-copy, multi-user system is primarily related to AAARF's remote animation facilities. It

is the network connections which complicates the process of ruiuing AAA H F to tlie point that it

3-S

has become easier for each user to have their own copy of AAA lF (and the necessary files oh the

remote machine). The background process PRASEBG running on the display workstation uses the

user's login path as the default. path once the connection is made to the renotve]lost. Obviously, any

programs which are to be remotely started by AAARF must be in the users directory space. The

most elegant solution to this problem is to obtain permission from the iPSC/2 system ad minist rator

to establish a directory specifically for the AAAR F instrumentation and server code on the iPSC/2

and change the PRASEBG program to always look there when connecting. Class algorithms could

also be placed in (or below) this directory.

At the same time, the requirement for the DISPLAY variable must be eliminated. A casual

inspection of the problem suggests there are several possible alternatives (refer to Figure 3.1).

"* The first is to change PRASEBG t.o add the name of the display to the command line argument

list, for the rsh call which remotely starts the scrvter program. This would allow the s(rrn(r to
in turn pass the display name on to the algorithm being animated, which in turn passes it.
on to aaarf.clct. The only drawback to this process is that it slightly changes the algorithm

instrumentation process.

"* The second case makes the same changes to PRASEBG. The server program, however, does
not pass the display name to the algorithm being started. Instead, it. declares a local environ-
ment variable called DISPLAY and sets it, equal to the display name passed by PRASEBG.
It. then makes this variable visible to child processes using the Unix erpor4[24] function. The
advantage to this solution is that no changes to the instrumentation process are necessary.

"* The last method is to again make the same changes to PRASL'I3B and have the .scrr'(r
program write the display name to a scratch file in the /tnip directory. aaarfclcl then reads
this file to get the name of the display workstation. As in the previous case, no changes to
the instrumentation process are necessary.

A closer look at the inter-process relationships of the three processes on the iPSC/2 within

the context of the two modes of operation (automatic and manual) reveals a problem not. addressed

by the first two options. In manual mode, the parent-child relationship does not exist between

the serrcr and the algorithm, consequently it would not. he possible to pass the display namie via

command line arguments or an environment variable. Thus, the only viable alternatie is lie last.

3.,.2. 2 Thc Y"lificr ELiirron-miat AAAlHF's reliance on the Nolifier should be re-

moved completely. The reason for t his is discussed]more fully in ('bapter IV, but focuses on making

3-9)

AXARF platform independent. As long as AAARF is dependent upon features or facilities specific

to the Sun platform, it. is not, possible to port AAARF to other architectures.

AAARF's dependence on the Notifier is a particularly vexing problem. Because the Notifier

is an integral part of the SunView model, it, is necessarily an integral part of AAARF. Removing

AAARF's dependency on the Notifier will be a difficult and tricky task because tile centralized

control afforded by the Notifier will have to be split. over several facilites, e.g., signal handlers,

window managers, etc.

3.3.2.3 Hard Coded Socket Ids The problem of hard coded socket ids is one that is

not likely to go away. Several alternatives have been explored and none appear any more reliable

than the current method. One method which shows promise is to have PRASEBG dynamically

allocate the necessary sockets, and then pass these as parameters to the server. The sequence

of events then follows roughly that of passing the workstation display name (see Section 3.3.2.1).

With this method there is at least a 50/50 chance that the corresponding id will be available on

the remote host.

3.3.2.4 Configuration Fragility The problem of connection fragility arises from the

synchronous (blocking) reads that AAARF uses for sockets. The obvious solution is to use asyn-

chronous reads (this is done with the Unix fcntlO function with the ONDELAY switch [24]).

Unfortunately, changing a synchronous program into an asynchronous program is never easy, es-

pecially with a system as large as AAARF. The ideal approach is to identify those blocking reads

which can potentially cause the system t.o lock up and replace them with asynchronous reads. This

may limit the number of changes necessary and potentially simplify the process.

3.3.2.5 Detecting Remote Problems The only way this can be implemented is by

changing the instrumentation system to allow for algorithm fault reporting. This can he (lone in

one of two ways:

3-10

I1. Use the Interesting Event (IE) facility. AA ARHF's 1IF facility is the basic unit, of coniunuticatio01
het ween the algorithm being animiated andl the animation process [5:(hiapt er 3]. Th~nis is a
very attractive method because tine infrastructutre already exists. Since each class has its own
animation process, it allows for tremendous flexibility. There is even room for standardization1.
Tihe only real dIrawback is that it. woutld not work in manual modle because ILl's are not ulsedl
in this mode.

2 . Modify the PRASE system (aaaij-clcl) to include the reporting of application errors. Cur-
rent ly, only t~he context of node. commu nicat ion is monitored, not the content. 'lThis coild1(
lbe changed to allowv the reporting of excep~tions so that, aaarf-clcl could notify PHASEI3(
wheniever serious errors were detected by the algorithmi beinig animated.

'The only viable alternative appears to be the second one,. While it Is inot, as elegant as lhe first

alternative, it is more cotmplete b~ecause it will work for both the attt ouat ic and~ imanual nmod es of

operat ion.

3.3. 2.6 uPSCI/2 Ilypcrcuibc Node Program Termnination The, first priority with I nodle

programn terrminat ion is to providle adequate dlocunmentation arid examples of proper nodle prograini

instrumentation. Th'le best. Way to accomplish this is to provide directories cotntaininig examplles of

urastrumented programs which have been thoroughly tested. Each shiouldl 'otntain a REM)I)ME file

witrh any caveats clearly explained. The programis chosen for animation should be representative

of the applications typically run oii the i PSC/2 and should iticlude some very siitple programs

for programmers new to the i PSC/2 (such as thle Intel supplied Ring dlemnist rat ion programi).

At thle same time, an expanded users manual with di(etailed explanatloins arid exaifllles shouild he

(developed. The users manual should mirror the exaniple (directories and should cont ain referetices

to thle programis in thle (directories.

It may also be possible to programmnat ically p~r~event, the en~t() problem dliscussedl in Sec-

tion 3.2.2.7. Carreul examination of aaarj-clrf reveals that thle following code segimeint

{if(end-count == total-pids) && (iprobe(-1) == 0))j

is used to determine when to send the end-of-data message to AAARF. Simply changing the sense

of the equality check between end-eound and total-pids may be sufficient, but thorough testing is

required to ensure that other problems are not created.

3.4 Implementation and Analysis of Results

The focus of the operational maintenance phase is to make AAARF runable, and, time

permitting, make it easier to use and more reliable. The following sections describe the results of

implementing the recommendations of Section 3.3. Again, only those recommendations which were

deemed necessary to satisfy the stability and benchmark requirements were implemented.

3.4.1 AAARF in General At the beginning of this investigation there were three copies

of AAARF available, none of which ran properly. After some initial failures, one was eventually

compiled and tested. It functioned properly, with the exception of one of the parallel performance

animations. This turned out to be a simple error in one of the include files and was quickly fixed.

The remaining systems were archived.

3.4.1.1 Configuration Control AAARF has been moved to the olympus file server, in

/olymnpus4/aaarf. Currently, only the AAARF thesis student and the olympus system administrator

have write access to this directory. No changes to AAARF were necessary to accomplish this. A

very positive effect of this change was to relieve the current AAARF thesis student of the burden

of keeping AAARF running for other researchers while AAARF was in an unstable state during

the GUI replacement.

At the same time, the corresponding AAARF code on the iPSC/2 was moved to /usr2i/aaarf.

This did require some changes to AAARF. PRASEBG was changed to look in /usr2/aaarf for

the server program. Previously, PRASEBG defaulted to looking for an aaarf directory below the

3-12

user's home directory ($HOME/aaarf). The resulting AAARF system has been used throughout

the Summer '92 quarter with no problems reported.

The issue of responsibility has not, been settled. However, a better transition mechanism

has been instituted by requiring the new AAARF thesis student, to work with the current thesis

student during the six month overlap period. The transition has been formalized by requiring the

new student to take two hours of CSCE699 during the fall quarter and placing him under tile

supervision of the current thesis student.

So far, this has been very successful. Several new parallel algorithms have been instrumented

and incorporated into the AAARF system as a direct result of this formalization.

3.4.2 Parallel Computer Performance Monitoring

3.4.2.1 User Requirements for Remote Connection The recommended method for

eliminating the AAARFSYSTEM environment variable (Section 3.3.2.1) has PRASEBG passing

the display name to the server program as a command line argument to the rsh call. The server

program then writes this name to a scratch file in /tinp where it is subsequently read by aaarfjelct.

(aaarf-clct also removes the scratch file upon termination.)

These changes have proved very useful. AAARF users (including the author) no longer

complain about having to change an environment variable every time they change workstations.

It, has also simplified training of the new AAARF thesis student as well as other researchers using

AAAARF.

3.4.2.2 The Notifier Environment There is very little in the way of maintenance that

could be done to the Sunview version of AAAR.F regarding the Notifier. However, some changes

were possible using XView. These are covered in detail in Chapter IV.

3-13

3.4.2.3 Hard Coded Socket Ids This problem was not addressed beyond what has

already been discussed.

3.4.2.4 Configuration Fragility Several attempts were made at solving this problem,

with no success. (Refer to Figure 3.1, page 3-4 for this discussion. Recall that blocking reads

cannot be interrupted while running under Notifier control.) The socket, read which appears to be

the culprit, is in the function getIE. getIlE0 is a class specific control function [5:52] provided

by the client programmer. It's purpose is to request the next IE from PRASEBG and send it to

the animation process (in this case PPERF). It is in the file aaarf/PViews/Control.c. The source

code for getlE(is shown below. As can be seen, the rcad(can only return successfully if data

is available, and the only way to satisfy this requirement is for the operating system to block the

read action until this occurs, which is exactly what Unix does.

TRACE-DATA *getIEO

TRACEDATA *IEpacket;
int IErequest = IEREQUEST;

IEpacket = (TRACE-DATA *)malloc(sizeof(TRACEDATA));
if(!IEpacket){

perror("animate(O) Malloc problem"); algKill(;
}
/**** ASK FOR THE NEXT EVENT ****/

if(write(algSocket, LIErequest, sizeof(int)) < 0){
perror("animate(1) TX IErequest"); algKill();

I
/**** Get the next event from the child process *s**/

if(read(algSocket, lEpacket, sizeof(TRACEDATA)) < O){
printf("ALG: reading alg socket - no data available\n");
perror("animate(2) RX TRACEDATA"); algKill();

}

/*** SET IE TO ADDRESS OF THE INTERESTING EVENT PACKET ***/

return(IEpacket);
}

3-14

Analysis of what happens if it is assumed that a read which returns with no data is not a fatal

error shows that, the function which calls getlEO, aninalc7hecAlqorhTim ignores an empty IEpacikcl

and effectively does nothing. This is very encouraging because no changes in the control structure

are required to accommodate the non-blocking read.

rcsetPChild0 is the function which allocates the sockets used by gciE0 (also in the

aaarf/Pl'/cus/Control.c.) To change the read from blocking to non-blocking, it is necessary to

make a call to fcntl) with the parameters shown below in the code segment fromn rcsctPChIld.

/****** Start child process if first time or child has died ******/
if(algSocket == -1 I write(algSocket, &resetCommand, sizeof(int)) < 0)
{

printf ("\n\nStarting BG process\n");
if(algSocket != -1)

(void)close(algSocket);

/*s** SET UP SOCKETPAIR TO COMMUNICATE
WITH THE BACKGROUND ALGORITHM ****/

if(socketpair(AF_UNIX, SOCKSTREAM, 0, socket) < 0){
perror("Opening socketpair"); algKill();

}

fcntl (socket [PARENT] ,FSETFL,O-NDELAY);
*/

/**** START THE BACKGROUND ALGORITHM PROCESS ****/

if((bgProcess = forko) == -1)f
perror("Can't fork() background process");
userWarning(NULL, "Can't fork() background process");
exito;

}

if(bgProcess == CHILD){ /* start a child process */
(void) close(socket[PARENT]); /* child close the [Il socket */
(void) sprintf(c-socket,'"%d",socket[CHILD]);/* use the [0] socket */

if(execl(BGFILE, BGFILE, c socket, NULL) == 0)(
perror("Can't execl() background process");
userWarning(NULL, "Can't execl() background process");
exito;

}
}

(void) close(socket[CHILD]); /* parent closes the [0] socket */
algSocket = socket[PARENT]; /* use the [I] socket */

3

.3-I3

This change was made under the assumption that PRASEB;G had no way of knowing whether or

not, a read was pending.

The results were inconclusive. Using the non-blocking read did in fact aik tv mi niitaiion

process to be interrupted. It also solved the screen freeze problem caused by users aitempting to

start the animation before PRASEBG is fully connected to the remote system.

However, as is often the case in software maintenance, it, created niore prollems than it solved.

Algorithm resets are disabled after the first, reset, an(d the animation never returns control because

it never gets the end-of-data message. An attenmpt at. analyzing PR.ASEB(G to see if the problem

might be at the write end of the socket, threatened to consume the entire thesis effort! PRAS"EBG

is an amazing program. The majority of the code in PRASEBG is in the main() routine, and

it is nearly ten pages of code. 2 PRASEBG is an incredibly complicated program. It manages

communication over four sockets, all of which are active simultaneously.

Another alternative which was considered, but not, tested, was that of adding a signal handler

for "C through the Notifier. This probably wouhl work but does nothing for the attempt to wean

AAARF from it's dependence on the Notifier.

This is a very difficultl problem. Given the complexity of the problem and the knowledge

that the current system works, the decision was made to suspend work on improving the network

connection until after the GUI replacement was finished.

3.4.2.5 Deteclting Remote Problems Adding facilities to detect remote problems re-

quires major changes to the PRASE data collection system, aaarf-clct and AAARF. Because of

the scope of making these changes the decision was made not to pursue this until after the GUI

replacement was complete.

20n a whim. I printed the file on a line printer using standard 6oi line, 132 character wide printer paper and

measured the matn() routine - it's nine feet long!

3-16

3.4.2.6 PSCI/2 Hypercube Node Program 7krmination Analysis of changing the in-

equality sense between end-count and total-pids in the code segment

{if((end-count == total-pids) && (iprobe(-1) == O))}

from aaarf-cld shows that simply changing the sense of the inequality is insufficient. (endcount

is the number of nodes which have reported a status of DONE. iprobc(returns the number of

messages in the message buffer for that process.) The decision to send the end-of-data message

to PRASEBG must be based on the assumption that the node programs will not finish in any

particular order. If the user has incorrectly instrumented his/her program then multiple calls to

prasr-fxUt0 are generated with the end result of over-incrementing end-count and placing extra

messages in the process message buffer. However, there is no simple way to determine whether or

not these remaining messages are node done messages, thus they must all he read. Consequently,

the sense of the inequality is irrelevent. Note that, the compound conditional is necessary because

there is no guarantee that there will be a message in the buffer when this statement executes.

Currently, the best solution to this problem is education and examples. Appendix B is an

extremely (letailed example of how to instrument a simple iPSC/2 program for animation with

AAARF. This appendix will be included in the new UTser's Manual.

3.5 Summary

The changes made to AAARF have succeeded in making AAARF more stable. Several

research students have used AAARF during the Summer '92 quarter for analysis of parallel programs

on the ipS '/2 . -! ah! hax'c rp.r.tcd favorable results, The next chapter describes the work done

to replace the SunView GUL

3-17

IV. X-AAARF - Design and Imphcnintatiorn

4.1 Introduction

This chapter is divided into two parts: the first describes in the detail the selection of the

Graphical User interface (GUI) chosen for the X based version of AAARF: the second describes the

design. implementation, and testing of the new interface, and the results of making these changes.

4.1.1 A Prototype X-AAARF Early in '91, Williams developed [30] a prototype X window

based version of the SunView AAARF. The Athena widget set was used and development was done

on a Silicon Graphics Iris 4D. The prototype included the AAARF main process, the common

library, and the array sort class. The prototype was written using an early version of the Athena

widget set. This set was reported by Williams to be weak and very buggy [30].

Late in '91, Lack [13:Chapter 5] attempted to extend the prototype X-AAARF. Lack ported

the prototype to a Sun 3 workstation and succeeded, after a great deal of difficulty, in compiling the

prototype. Eventually, Lack was able to make several extensions to the prototype, but the overall

system was fragile and prone to failure.

An attempt was made to evaluate the prototype X-AAARF in May of '92. By this time

the operating system and window environment had been upgraded and the prototype would not

compile. Concurrent with this, an analysis of X Window development environments was underway.

Based on the results of the analysis (described later), combined with the inability to compile the

prototype, and the knowledge that the prototype would probably require redesign and reimplemen-

tation anyway, the decision was made to abandon the prototype code and begin again.1 Besides,

it's a software engineering axiom that developers should not attempt to make deliverable products

out of prototypes.

'The prototype X-AAARF was never intended to be anything more than a proof of concept, demonstration,

consequently Williams did not document his work. The documentation provided by Lack was too general in nature
to be of much use in resurrecting the prototype.

4-1

4.1.2 Sun View in an Open Windows Environment Most. contemporary students at AFIT

are using OpenWindows simply because all of the Sun workstations currently in use at AFfl"

default to OpenWindows. Few students have any exposure to, or experience with. SunView beyond

applications such as the LaTeX support programs like duipage or hItsun. Most are not, even aware

that the windows put up by these applications are SunView windows.

The real issue here is that SunView and OpenWindows window managers are incompatible

[27:219]. The SunView and OpenWindows window managers each manage their own window stack.

Thus it is not possible, for example, to put an OpenWindows window on top of a SunView window.,

The end result of this is that applications running under the two window managers must share Ihe

screen in a tiled (non-overlapping) manner if access to both is required (this is, of course, the users

responsibility). Orphaned Sunview windows are particularly onerous, usually requiring the user to

logout and log back in to clear the screen. In extreme cases it may be necessary to re-boot tlhe

workstation. The color maps used by the two window managers are different, causing annoying

flashes and changes in color [27:222] when the mouse is moved back and forth between windows

owned by the different window managers. The window interfaces are also quite different between

Sun View and OpenWindows.

The issues described in the prceding paragraph are generally not a problem for the average

user because they are usually running an application like dvipage. Such applications are of a type

which are run and then quit with little or no interaction with other windows which might be on the

screen. This is not always the case with AAARF. When animating remote processes it, is necessary

to have a window open to the remote host. There isn't always room on the screen for multiple

non-overlapped windows and it. becomes problematic when trying to run AAARF and control the

remote process at the same time. The most infuriating problem occurs when an orphaned SunView

window (which can't. be closed or iconified) is covering the center of the screen and the user wants

2
Ihe reason for this is not at all obvious: the root window is managed by OpenWindows rather than by the Sun-

View applications; the SunView applications effectively update the display without reference to the Open Windows
windows[27:219-2201.

4-2

to log out because this is where the OpenWindows exit confirmation notice appears, and it can t,

be seen because it. cannot be placed in front of the SunView window!

Other problems resulting from the incompatibilities are discussed in (27:Appendix B]. Ap-

pendix B of (27] also discusses actions users can take to renedy or lessen the impact of these

problems but they are too complicated to be practical in the context of AAARF. The goal is to

make AAARF easier to use, not more complicated.

4.2 Selecting a Replacement Graphical User Interface (GUI) - .XVirw

This section presents the analysis which led to the selection of XView as the GUI for the X

Window version of AAARF.

4.2.1 Analysis of X Window Development Enviornments Each of the candidate GUIs is

examined within the context of the considerations itemized in Section 2.5.1, GUI Requirements

(which the reader may wish to review on page 2-15) before continuing. As it turns out., two of

these considerations, Target. User Group, and User Friendliness (End User), are not issues specific

to each GUI. These two are treated in a general manner before each of the GITIs are discussed.

The target user group at AFIT, obviously, is the AFIT student body, and in particular,

students in GCS/GCE programs. With the large influx of Sun SPARCstations. the target user group

has ceased to be the issue it once was. With the exception of students in the Graphics sequence,

most, students use SPARCstations for their research and day to day computing activities. It is

assumed that the situation is similar at other universities and research/development organizations.

At the same time, as graphical user interface languages have evolved, the differences between

them have slowly diminished to the point, that most window environments are essentially the same.

From a "user friendliness" perspective. the only real issues that remain are those which affect the

programmers using these languages.

4-3

Application

Widget Tolkit (OLIT, Motif, etc.)

Xt Intrinsics

Xlib (C Language Interface)

Network Connection

r X Server I

Figure 4.1. Programmer view of the complete X Window System [31:12].

Recall that each specification or standard is composed of two parts, the toolkit, and the

environment. It is difficult to discuss one without also discussing the other. For this reason, the

discussions which follow may at times appear confusing. Keep in mind that while the toolkit is

the focus of the evaluation, the associated environment is necessarily included as well. (Figure 4.1

gives a visual context to the relationships between the various toolkits and the X Window System.)

4.2.1.1 OLIT OUT is the OPENLOOK Intrinsics Toolkit and is based on the Xt

Intrinsics toolkit. OLIT is one of two standards currently competing for the title of "Industry

Standard" (the other is Motif). OpenWindows is the associated window environment. The Open-

Windows environment is largely implemented with the OPEN LOOK toolkit (parts of it. are still in

XView) and it comes bundled with the OLIT development libraries. OpenWindows is the default.

user interface environment for the SPARCstation2.A It is running on all SPARCstation2s atr AFIT.

Open Windows is the environment new students are first introduced to, and for many, the only one

they ever use during their stay at AFIT (outside of PCs, which don't count anyway).

"* Compatibility Not an issue.

"* U1,er Friendliness - Programmer As a "top level" widget set, OLIT provides all of the ben-
efits normally associated with an object oriented paradigm. Within the context of AAARF,
which has no "unutial" interface requirements, OLIT is completely satisfactory. It is also
completely compatible with the C programming language. Oddly, Sun does not. ship any
OLIT development documentation, this must be purchased separately.

"3
This is an installation configuration decision. Sun bundles OpenWindows with the operating system. Of course,

system administrators have the option of installing other environments.

4-4

"* Th lotbitIi Rotaiil~itY lp~iwars tobe good. AdmitittedII. itls isd Iilictilt to gatig'. I o help wit I

si~t ware Iprob~lemts. Sunt providles ;1 kniownt 1) 1 I list withI achII
releast' InI $0PENNN N 1IONI I*;/sIiart, [22: 1]. It' workaroiuids alre available. I liese ar. ;tls' Ill-

I. I , 1Id

"* I'uctabuibl 0111 applicatioins canl be run uitder aniy wind~ow n ialiager that 1, ()PINLOOK
comtipliant.t Most miajor workstation vend rs. anid mianiy third party, vetidor~s ais well, suppix
()P1 N LO() K Coir11Ipltat WiollOWiaigr.

"* I'nhatucu (apabibbo s 01AI F1(does provide soitieextended capabilitios over StitiView. \lost ofi

lthcs' are coiiveitieitc orietitedi thinigs which tkinglit simtplify programinitilg. hoill would nt iedoal

;Ili :iddit ion al finlict jonalit v. to .*\ RF .* *H it.I short, I l're is niothinig about11 01.11 thFat w iiIdd

allow 71 I)i'eXr o islv rollt ainai7l(It feat tre to 1w' added to A A AP .

"* Dr ut opmniiul L]ftOrI/lo IThis too0 is hard to giiage. Mlost of t lie funjct tioalityv of SlitilVIew
is directlIy available. thel(difficult part is t ratisl Ing ihe funrct ioniality ofthle Stili Notifher into
X Wjindows calls. InI truth, this is not as diFlicult asit mrighit appear ott i lie stirifacc: th liX

Witidows S vrarid wvindow riartager programiis already fitnct (ii [il mutch the samte rinmittru

ais thle Notitier. Thus, it is possible to inter-cept window 41ttit cotlitwnards. etc.

"* A caiability Stitl ships new workst ationis withI OperiWirolows and7((LII. including t le evl
opititelt librarieIs.

"* Pcu-cuumn ifto IQTor.1 Not an1 issule.

"* Pi-or~cti(nf i ITow Not art isslue.

,;.ý2. 1. 2 Motif Niot if is t he Open Software F'oundation's user interf"ace entivirotitierit

at16ltoolkil. \1o11f is also basedh ott the(\t Itht irsics toolkit, 'flit, Nlot if widget systemt is CoH-

figitralde anti extenisible. (onligitrable itteats that Mlotif widgets are dt siytod to be used as, is.

or]itt comibitnatioti with ot her widgets to Formt new widlgets. (This is just inilerilatitc.) MNttiv of'

Ilifstatndard' wihigets available with \Iiot if are act ually formitd t his waxý.

.\lot If widgets (inistanuces) are dynuamiically allocated at rit t inie. Widget classes are sl at ically

allocated(withI initializati Otdtata and11 operatioris / Iiet liods). anid are inlieriled ku iiist 7iict' ait rit

tnit. (lThe reseniblance to C ++ is nto accitdent, tl(Nleotlif toolkit is writ telt il ('++.) A \Ittif

Widget inlst aice, thenl, is comuposed of a hvnaitiically aIllocated stmint ire cent ainting atrlibtitts anid

oprt'ritotis specific to t hal instatnct. Cotmbitntd With ai p1oitnter Ito a static dat a sI rutet ire (((alit itiig

at tributits atnd operat iotns for every wvidget of that cla~ss. If t lie aboveý is a compolosite wxidlget.the

ilie aI(ove Is alpplied to each Cotnstittuetnt widget illi the coltiosit' obtjt'ct

Nlot if widge-ts Imiplemen'tt tiilln of the(high level fitlctictotis assewiatled wit I (.IIk auth nour-

tma~lly associated with Iilrte winldows typ~icatlly foutnd ill a windlowinig t'tviretmviiit'i : nie s. huft t(ii.

I1-5

scrollbars, frames, forms, dialogs, etc. These are then combined to implement comnmon window

environment functions. An example is the FileSelectionBox widget which comnbines many of the

above functions to provide the functionality to pop lip a window, from which users can select or

enter a file name. All of the functionality needed to search the current directory (with a mask or

filter, if desired), present. what is found, allow the user to select an entry from those presented,

change directory, or enter a file name from the keyboard is either built, into the widget, or inherited

from others. Obviously, this is very powerful stuff! With such high level functionality built into

objects, user interfaces can be designed and implemented quickly.

"* Comnpatibility Motif widgets are intended to be used with the Motif window manager (mwniN),
but also function well under the OPENLOOK window manager (olwm). Several Motif appli-
cations are in use at AFIT, and several have been developed by researchers in the database
sequence. None have reported any problems that can be directly attributed to Motif running
under the OPENLOOK window manager.

"* User Friendliness - Programmer There is a formidable learning curve with the Motif toolkit.

"* Reliability Unknown, but assumed to be at. least, as good as OLIT.

"* Portability Motif "appears" to be more widely available than OLIT. It has been adol)t.ed by
Silicon Graphics and Hewlett-Packard as the standard for their windowing systems.

"• Enhanced Capabilities The same applies to Motif as applied to OLIT.

"* Development Effort/Time Motif is somewhat more difficult to work with than the other
widget sets. It is my opinion that the development time using Motif would be longer than
that for OLIT.

"• Arailability Motif is not. generally available on the SPARCstations at AFIT. Several snmall
clusters have licenses, but these are not available to the general student population.

"* Procurement Effort As a minimum, Motif would have to be purchased and installed on all
of the workstations on the scgraph and olympus file servers (about 50 copies). The license fee
is $54 per workstation. A floating license is also available, but this would only be practical
for the olympus file server.

"* Procurement Time Unknown. Since there are a few copies available, arrangements could
probably be made to use one of these machines for development purposes while permission
is sought to purchase the necessary number of copies. This is a delicate situation to be in,
however, because there is always the risk that procurement can't, or won't, cooperate.

4.2.1.3 Athena The Athena widget set was developed by MIT in response to re-

quists from users that a user interface widget, set, be included with the X distribution. The original

set, was considered weak and buggy. MIT has continued to expand and improve Athena, butl tie

emergence of the OLIT and Motif toolkits has largely overshadowed the Athena widget set. ''ll(

general consensus seems to be that the Athena set is not likely to last.

1-6

"* Compatibility Not an issue.

"* User Friendliness - Programmer The Athena set is widely considered to be one of the more
difficult to work with because it is a fairly low level widget set. This was contfired by
Williams [30].

"* Reliability Early releases were reported to have low reliability. The general consensus now
seems to be that it, has improved, however, it, seems likely that MIT will adopt. either OL1T
or Motif as the distribution widget, set once it becomes clear whfich is being adopted as the
standard by the user community.

4

"• Portability Since X comes bundled with the Athena widget set, it is easily the most, portable
of the lot.

"* Enhanced Capabilities None.

"* Development Effort/Time Williams reported considerable difficulty in using the Athena wid-
get set on the prototype X-AAARF [30]. Williams was also of the opinion that the set was
limited in comparison to Motif and OLIT. It was felt that this limitation would unnecessarily
lengthen and complicate development.

"* Availability Not an issue.

"* Procurement Effort Not an issue.

"* Procurement Time Not an issue.

4.2.1.4 XView XView is an OPENLOOK compliant widget set from Sun Microsvs-

tems. The motivation for the development, of XView is straightforwardly stated in [10:11]:

"Today there are several thousand SunView applications, and one of the aims of XView is to

make it easy to bring those applications to the X Window System marketplace."

The XView programmer's model was largely derived from the SunView model. Much of the func-

tionality of the SunView model is retained, but. the "look and feel" have been updated to comply

with the OPENLOOK standard. The XView widget, set is not as sophisticated as that, of Motif.

There are no high level widgets, like FileSelectionBox, and the objects are not configurable. In fact,

XView is rather simple and rigid in comparison. The initial learning curve is small; programmers

can quickly develop simple, efficient interfaces with minimal effort. Hlowever, to dee'lop sonething

equivalent to the Motif FileSelectionBox is a formidable task indeed!

SThe X consortium recognizes two types of "standards," exclusive and non-exclusive. Xlib is an example of an
exclusive standard it is the only C-language interface to the X protocol. Non-exclusive standards, such as the Xt,
Intrinsics or the Athena widget set are considered part of the X window system (and the distribution system), but
the ('onsortiuim may recognize other similar interfaces as well. [31:11]

4-7

Clearly, XView's most attractive feature is it's similarity to SunView. Sun has committed to

XView by" making the i.oolkit freely available; it is now part of the MIT X distribution as well as

Unix System V [10:12].

"* Compatibility Not an issue.

"* User Friendliness - Programmer Of all the toolkits reviewed, XView has the easiest pro-
grammer model to understand and is far and away the easiest. to program with. A number of
simple, but effective examples are provided with the OpenWindows development software and
are the same examples used in [10]. Since the XView model was derived from the SunView
model, very little effort is required in making the logical mapping from Sunview objects to
XView objects.

"• Reliability Reliability for early releases was reported to be poor. However. Sun appears to be
committed to XView and later releases (including Version 3) have fared much better. More
is said about this issue in Section[implement ation and results].

"* Portability Questionable. XView is currently being shipped by MIT as part of the X distri-
bution. Since the Sun Notifier is an integral part of the XView model, it is not clear what
this means in terms of portability.

"* Enhanced Capabilities None.

"* Development Effort/Time Based upon its similarity to SunView arguably the shortest of the
lot.

"* Availability Not an issue.

"* Procurement Effort Not, an issue.

"* Procurement Time Not. an issue.

4.2.2 Motivations for Choosing X View Based upon an analysis of the GIUI systems surveyed

above, XView was chosen as the GUI repalcement toolkit. Rather than go through an exhaustive

analysis of why none of the other candidate GUIs were chosen, this section simply presents the

motivations for choosing XView.

A great many factors were considered in making this decision. The driving factor was time:

it was necessary to have a toolkit which was immediately available, and preferably one which would

be quick to learn and easy to apply. None of the GUIs surveyed fit. this requirement better than

XView.-5 XView was designed with SunView programmers in mind. The syntax is similar. an(l

in inany cases, exactly the same. '[ite similarity between the XView and SunView programming

riodels facilitates the top (town replacement strategy and can potentially accelerate the process.

-This is difficult to know a priori; sometimes one just gets ticky and guesses correctly.

'I- X

X View is OPEN LOOKl compliant, which means en~d users do not have to learni muiot her jutiterface.

Procurenienwt is not a n issue. Exper Irient at ion wit It XView (luring evaluat ion revealed thbat SuinVIeOw

codle comrpi les u nder X View. Apparently, a comiprehiensive set of N iew wrappers alIlows Suni View

code to lbe comrpiledl directly3 into N tew ob~ects. Th'le process Isnr t perfect . and iv hre Is somi e loss

of frunctijonality, but it does furt her enhance the preferred top) downt replacemneit st rategy.

4.2..3 A ('Ioscr Look at A' Viur' Before proceeding, a c-loser look at XView is in order. N View

is an ohject -oriented toolkit. IUnlike NI ot if, XVivw provides no explicit facili ties for comp~osi Ii ob-

ject s (there Is not hing inherit in X View t~o prevent uisers from impllemtenttinrg that kinid of Cu ict ii1-

alit V. butt it is riot nleedled by A AARFl1). XWiew object~s are ext ensible, anld facilities are, provided'

for t hat purpose, hut 'it was not necessary t~o make use of this featiutr for A AARF I. T[Ie advantages

aind d isad va tt ages of iusi ng X View are summlnarizedJ in list, form:

"* Advantages
Most. of thre SurirView GU I look and feel miainrttainedl

Notirier still available,

Simrple (UI st ruct ure

Very easy to use

Goo)(d introduict ory docurneitat ion

Soujrce codle for text examrples included withI Open Wi nd(ows

Sun View codle coirpilable itt XView with ririniiral loss of firtict ioiialit v

"* DIsadvantages
Hel iance on the trot ifier

.No bight level widgets

Object funct ionualityv often not clearly dlefined

Thew appearance oft het Not ifier in hothI lists isniot a contradict ion. The Notifier isnieeded to siiiitlif

the GU; I replacetment.: as long as thre Not ifier is available, it is trot trecessaurv to findl altenrtate rrreair

of hanudlinig events, 'TIis is mecessary Itt thle near termi. Itt thre long terim. for port ability reasons.

reliatice ont the Notifier tmulst he eliminitated.

'Wrappers are an out growthI of t he recent intecrest in software reusatbiti 'v. W.raiJppens alto applt~~icai jo., ,c~d 1'. t
remns.,tb to raiistlt ing furl] i on 'alls I,, (Ad ront inn's rho, I tie formnat ineeded'n to new r"11 lit Il'.

-1-9

4.2. -'. 1 1/ic A 1ici Programmenir's Modcl This svct lol presenits ani overview of the

XX*iew P~rogrammer's Modlel as documented Iin [10:(hapt er 21. XVie-w provides the programmiier

with a predlefinedl set of interface comnponenits which are intend~edl to simplify appl icat lotis develop-

ient . X View is an object-oriented toolkil, b~ut the obji el-or-ie n U ii esscof XV jew Is limiiited. X View

objects are opaque and XView dtoes not support comnposi te(object s at. tilie user level.. Althlouigh

miost X\View% objects are thlemiselves comnposit e objects, froni the user's perspective X \iew suipports

only one(level of inherit ance. essent ially that of instantiation.

('rcating anad Manipulating Objects X\'iew provides a very clean intterface lo [It's

object set. 'There are onily six rout ines:

"* xv...mit(Establishes the connect ion to thev server. Iniit ializes thle Notifier. initializes lhe
tDefaulIts/ Resource-Manager (database, loads thle Server Heson rce Manager dat abase, and

parses any generic toolkit comimand line opt ions. Called onice at thle lbegilliiug of thle programi.

"* xv.Armate(C (reates ati object. E'very X lViw object is created with Ib is fittct ionl

"* xv..destroy(R eclaimis the memory allocated to aIlt ob~ject.

"* xv..fihd() (ondit ional front enld to xvcrevate(). Searches for awd ret urns an object witl Ii th

spec ifiedI parameters. If nione Is founid , t he object is c rea t eI

"* xv..gvt(G et t he value of thle specified at t riute for thle specified object.

"* xv -.set (Set the value of the speci liedI at tribuite for the specified object.

I sing these six routines. programmeirs cani create and uuiaiiipiilate ithe et'llir.' XView object set.

7'upes of Objects '[here are eight basic object types ini X \iew. lThree of' thlese.

(;t-lerl Objects, Wi'ndow's, and(Openriuri.% are core classes andu are, not tlirectly instaiit iable by flth,

user. 'The remaining five are dliscuissedI below. '['lie basic window enitityv is lie fount. All other

windtows are, classified as subtrindo us and must be at tached to f'ratmes.

e Franiixs A frame is the basic winudow object to whIiicli thle progra tuu tr has access. 'Fler'
are two flaivors. a baise frame, and a pop)-up frame. A base framie is a Fraitie with niuo pIrei
AXll ot her frames are, sutbfranies, so a pop-upj is any frame which is not thle base, framie., E achi
alpplicat ion has one base frame. 'There are no (plre'set) limiiis onl tli numbeh(r of siibframies. A.
framie is c'haracterized by aI bordler, which is managed by tilit' winidow tmaniage'r, and ati Interior
which is configured and muatnaged by thle programmtuer. [Ilie, windiow manager coat Isrt'd. uig
icoutihicat iou. tle-icollificat ion, refreshing, quitting. tc~c AllI XViWv windtows a1re h'ranil'd.

7(*,jf1S~j (,Was% t.11(.the j ~Nt WaY I c~i trt ixigtht'i- utils outj wa t'. wtrit a in"grain antd ir ianitial'. a fvw
framn" aunt ve Whtu hatppefnedt

"* Canvases A canitas subwindow is the XView graphics window. It's size is independent oft lie
owning frame. The entire drawing surface is called the paint window and the visible portion
is the viewn window. Multiple, scrollable views of a canvas are allowed within a frame.

"* Text Windows A text subwindow provides basic text editing facilities. This window is a
specialization of the canvas subwindow with text editing capabilities added.

"• Menus Menus are not actually XView windows, but they are bound to windows at display
time. XView supports a full range of menu types and options such as pull-down, pop-up and
pull-right. Menus can be pinned to allow them to stay on the screen after the selection is
made.

" Scrollbars Scrollbars are interesting objects. They can exist, independent ly, or be attached to
subwindows. Scrollbars are windows (because they are visible) but they are usually thought
of as properties of subwindows. Scrollbars do not manage the objects to which they are
attached, it is the programmer's responsibility to make the screen updates associated with
scrollbar actions.

An important feature of XView that is not a window is the Panel. Panels implement the OPEN-

LOOK control area. Panels manage panel items, e.g. buttons, sliders, text fields, and other fornis

of inputting data. The motivation for panels is to provide a mechanism for propagating events,

especially for objects which do not have a window associated them.' Panels are very important

in XView. For example, an application frame with no subwindows attached cannot catch interior

mouse events. Attaching a panel to the frame allows these interior events to be propagated.

Obviously, there is much more to XView than what has been presented here, but this is

sufficient. to give the reader the necessary background for the design and imiplemuntation discussion

which follows.

4.A (GU[Replacement - Design. Implemcntation and Results

The goal of the replacement, process is to maintain AAAP I' in a functional state. Because of

the expected lengthy tinie required to replace the G UI, and because considerabhle |tie was spent

strengthening AAARF's state at the beginning of this thesis cyle, no changes to fh/ .struattir of

.,AARF R which miqht jeopardize this goal were attempted. AAA13F is too big, the tinie at AIIT

'F'or the server or window manager to he able to prt) pagate an eveni, thIiat event nl1l1si Iie associated witlh s-ret-,n

real eslate. •"•ii tons have windows a.ssociated with theI i l ,, ut l l e''nutIs 1t1,, n-| f ius, f a Iuttt,• has a menn aLss,'cial•t l
with it. it is the panels respiinsihility t- ensure that the menun gets the |ltmllu pulsh event.

4-11I

too short,, and the learning curve too steel) to attemipt major design changes in 'onicert with) t lit,

GUI replacement. Furthermore, it is absolutely vital t hat AAAHF remain completely funtiic onal

between t hesis cycles. Once the G I T replacement is completed, cotisitlerat ion can be given t o design

change opportunities which might arise as a result using a different GUI toolkit (see Section 5.2.3.

This section starts with a description of the. inotivat ion for choosing thev replacement strategy

iilt imately adopted. Next, follows a general discuosion of several high level design Issues. Then each

of the niajor components of AAAR F is presented in a general discussion format which Includes

design, implementation, and results. Finally, the entire GUil replacement p~rocess is summarized.

4.3.1 Replacement Strategy The preferred nietllod for t his effort is to proceed in either a

top down or bottom uip mianner. The dlecision as to which is ap~propriate Is driveni by the designt of

AAAH F and the tool chosen for the job. Ideally, these two factors should be conmpat ible enough to

permilt a structured approach.

As shown in Figure 4.2, AAARF uses a miodular dlesign paradligni. Each class system is a

.self-contained, executable system. e.g. each could lbe run stand-alone. 9 '

Each) GUTI standard has two parts: the toolkit specification and the enivironmltent specifica-

tion. For example, Open Windows is OPEN LOOK compliant because it is writ ten 'in OLIT (which

is OPEN LOOK toolkit compliant), and the openf look window mianager (olwin) is OI5 EN LOOK

envi rolnment compliant. This is limport ant because th re is no qnartintee th at (U IS Comnpliant In

onr en mironnment ranm. run, or run correctlty, in another. For examiple. windows developed using

01,IT may not run in the Motif environment. If they dto, t hey m axy not run property. or feat iires

may' be miss ing. Sun iView is outside of all thIiis. Sun View windows work regard less of thle X envi-

roiirient onl thle workstation. TIhus, the initially perceived liability of SuniViews Independence is

"tlhis is no st irictly t mie lwause each ct ass is redoi red to (Ijie a socket for coniotohnicat i on with lthe moai n A AAl:
proi-ess. H owever, the only interaction the main A A AR Iprocess has with thte etass s' stvin is tI(send a kdi mnessage

ithe iiser q oiils AA AllF. or to send stoI p. go, and(rrsr i messages when ru nning uinder ceunt ral conmt rol. O thlerw ise
the class syst em is ent.irety setf contained and receivses all it 's input t hro uighlit.,own w infod injt ertace.

1-12

AAARF

Main Process
Mi

Class-Specific Class-Specific

Figure 4.2. The AAARF modular dlesign. Each outer box is a self contained syst~em with it's ownwindow based interface. Inner boxes are separate processes.

really an asset! The importance of this cannot be overstated! It means that while the AAAR/F

main process' interface is under development, the class animations can still be run. Once the main

process interface is completed and tested, each class cap be done without affecting those which still

contain the SunView interface. Clearly, the modular design of AAARF coupled with the ability

to display SunView windows provides the ideal development environment for the replacement of

AAARF's SunView GUI.

From a GUI perspective, the major components of AAARF are:

" The AAARF main process. The AAARF main process is the highest level interface to
AAARF. It contains the main menu, the environment control facilities, and the central control
facilities. Each has a window associated with it.

"* The AAARF common library. Each AAARF class interfaces with the common library for
animation control. There are three windows in the common library, the master control panel.
the status panel, and the animation recorder.

"* The AAARF classes. There are currently six AAARF classes. Each class has one window.
the animation window, directly under it's control. Each class also "inherits- a copy of Ili
common library windows at link time.

The goal is to selectively replace the GUI for each of the major comlponents. Again. AAAR I's nmod-

ular design provides the necessary mechanism through it's use of the I'nix make facilit ies[23:(hapter

4-13

5]. The main AAARF process, the class common library, and the six classes are organized as sep-

arate compilation units. A portion of the top level Makefile for AAARF is:

BASE = $(PWD)
LIBS = main common PVievs
APPS = ArraySort PPerf Traverse Trees PSort PSCP
all:

for d in $(LIBS) $(APPS); do (cd $$d; $(MAKE) BASE=$(BASE)) done

The arguments to LIBS are the AAARF libraries and the arguments to .4PPS are the six AAARF

classes. Each of these arguments is a directory with it's own Makefile. By selectively removing

these arguments, the make facility can be made to ignore them. The easiest way to do this is to

move the unwanted arguments to the next line and comment them out. For example, to limit the

compilation to just the AAARF main process, the Makefile looks like:

BASE = $(PWD)
LIBS = main
#common PViews
APPS =
#ArraySort PPerf Traverse Trees PSort PSCP
all:

for d in $(LIBS) $(APPS); do (cd $$d; $(MAKE) BASE=$(BASE)) done

Thus, work can proceed on the AAARF main process, without affecting any of the executables

built. previously. Once the AAARF main process is completed, the class common library is done,

followed by each class in turn.

The net effect of all this is that AAARF can remain functional throughout the conversion

process: SunView modules and XView modules can interact, without interference. One could not

ask for a "better" development evnironment! Based upon the above, a top down approach was

chosen.

4.3.2 Test Strategy The general strategy is to test each module as it is converted. AAARF's

modular design combined with the ability to display SunView windows naturally supports this. The

preferred method for operational testing is to run each animation and exercise all of the Master

Control Panel options. Each class should also be saved as an environment and restored, and

recorded and replayed. Also. AAAHF was given to the current AFIT C(SCE5S6 class for use in a

homework assignment involving tle ArraySort class.

4. .. 3 Drsign/Implemcntaizon Issues

4- I,

SMain Window-]

F _ I I
Main Control Environment Algorithm

Menu F Panel Panel Windows

(a)

Algorithm
Window

Algorithm ster Recorder Status
Menu Panel Panel Panel

F I I I
View window] I VeWidow 2 View Window 3 V no

(b)

Figure 4.3. (a) Original structure of the Main window. Each window is a separate window.
(b) Original structure of the Algorithm window. The view windows are contained
within the Algorithm window. The remaining windows are separate windows.

4.3.3.1 Algorithm Class Base Window The original AAARF window structures are

shown in Figure 4.3. These figures show the SunView parent-child relationships between the win-

(lows. Note in Figure 4.3(b) that the number of view windows is limited t.o four.'" Thewe are

not separately framed windows. Rather, each is attached to the Algorithm Frame as a SunView

canvas subwindow, and each is dynamically resized depending upon how many are visible at any

given time. The visual effect of this is to have the Algorithm Frame divided into (up to four) equal

10 rhe motivations for the decision which led to limiting the number of views to four is not clear, however experience
has shown that. displaying four views causes serious performance degradation. A d(iscussijon regarding tihe motivat ion
for choosing this relationship could not be found in [4]. The cause of the performance problem is unclear. The control
structure which governs which views to paint (the class specific function procrsslE()) is simple and well structured
and the associated graphics routines are short and uncomplicated. A more in depth analysis is required before the
exact cause can be identified, but that. is not part of this effort.

4-15

I Maste~r

Panel

F I
Algorithm Algorithm Recorder Status

Menu Window Panel Panel

Figure 4.4. New structure of the Algorithm window.

sections, with one or more of the four visible based on user selection. The disadvantage to this

is that the relationship between views in terms of size and and information conveyed is nonlinear,

e.g for two views to convey equal levels of information may require the views be different sizes.

With the current configuration, this is not possible. An alternative method allows each algorithm

view to have it's own window. The advantage to this is that it allows the view window's size to

be optimally adjusted for each view. The disadvantage is that it requires changing the core dat~a

structures and routines AAARF uses for window control. This design change was not, implemented

becase of the requirement not to make any core design changes during GUI replacement. However,

changes in the relationship between the Algorithm window and it's Master Control Panel were

made to accornodate incorporation of this change in the future. These changes in the relationship

between the Algorithm window and it's Master Control Panel are described next.

In SunView AAARF, the Algorithm window is the base window for the algorithm class. The

remaining windows in Figure 4.3(b) are children of the Algorithm window. Obviously, if each view

is to have it's own window a new base window must be chosen. The Master Control Panel is the

obvious choice. The Master Control Panel provides for all input, view, and animation controls for

each algorithm class. Making the Master Control Panel window the base window requires changes

4-16

to the basic event handling structure of the class common code. These changes are restricted to the

files aaarfCommon.c, aaarfMaster.c, and aaarfViews.c in the common directory. Figure 4.4 shows

the revised Algorithm window relationships.

The decision to proceed with this change was the only significant design change made during

the replacement of the GUI.

4.3.3.2 Graphics, Fonts, and Button Icons XView has a set of graphics functions,

but their use is discouraged. Instead, the manual recommends the Xlib graphics routines. At the

same time, XView also provides a set of wrappers for tile SunView Pixwin graphics routines. The

Pixwin graphics library is a small set of very high level routines, while the Xlib graphics library is

low level. Concern was expressed that replacing the Pixwin routines might be very time intensive

and prone to error so the decision was made to postpone replacing the graphics until after the GUI

replacement was completed.

Fonts in SunView are not compatible with fonts in XView. For most of AAARF this is not

a problem, the default fonts suffice. However, several of the animations are dynamically resized as

the size of the search space changes. The graphics routines for these animations have font. tables

which they use to match the size of the font. displayed to the size of the animation. The value of

this capability is minimal since these animations grow very quickly. For this reason the dynamic

font sizing was not carried forward into the new version of AAARF. 1'

The SunView AAARF Environment control panel and the Recorder panel both contain button

icons. The icons were eliminated from the new version of AAARF in an attempt, to reduce the size

of the these two windows. The size savings amounted to about 30% for the Environment control

panel and slightly less for the Recorder panel.

" The code has been commented out and appropriately documented in the event that future AAARF researchers
require this capability.

4-17

4.3.3.3 XVieiv Imposed Changes Because of it's similarity to Sun View, XView did

not force any changes in the existing AAARF design. XViews compliance with the OPENLOOK

specification and the fact that it is an X Window System toolkit iorced several implementation

changes. These changes deal pirinarily with event handling and are caused by:

"* the elevation of frame event, handling from the application program to the window manager.

"* the distribution of window events from the frame to other subwindows. In SunView, the
frame catches most events. In XView, event catching is spread act)ss the many subwindows.
The SunView model is simpler, but the XView model is more flexible.

In generia, event handling in XView is more sophisticated than in SunView. This is really inherited

from X WVindows and not due to any particular feature of XView; all of the toolkits surveyed provide

similar capabilities. Overall, the impact on AAARF is minimal.

4...3.4 Matters of Style and OPENLOOK Compliance Openwindows applications

supplied by Sun typically do not haxe an explicit "quit." or "kill" button or menu item outside of the

one provided by the application's base frame. In order to maintain consistenrcy across application..,

XView AAARF does not provide any "quit," "kill," "iconify," or "de-iconify" facilities for aiiy of it's

windows. These functions are provided explicitly in SunView AAARIF (via menu picks). bitt have

been removed in XView AAARF. XView uses oprnwin windows for frames and these framesý cointe

packaged with event, handlers for these actions. XView provides the necessary Notilier and callback

facilities to intercept these actions if the application requires it. XView A A ARHF makes liberal us(e

of these capabilities. Thile goal, from a users perspective, is make AAAFRF indistinguishable from

other Openwind(ows applications.

4.3..4 The AAARF Main Process "i"ie first mo(dule to be replaced was tlhie AAAIRF main

process. This is the main directory, containing the files aaarf.c. aaarf ('onIrol, c. aaarf,'cn us.c.

anarfEnrironmcnt.c. aaarfwindows..e, and aaarfUtilitius.c. These files provide the ltop level inter-

face to AAARF. The replacement started with an intense training session, rea(ling lie text [IO]

and running and modifying the examples in the XView source (lemo (lir('('lory. The intent was to

1-18

gain proficiency, and an understanding of the preferred use of the XView objects. This was fol-

lowed by an analysis of the SunView AAARF source code for tie AAAI F main process. 'This was

done by printing the source files and highlighting the code that was expecled to require changing.

Diagnostic messages were added to the SunView code to help in tracing events so they could be

more easily mapped to the XView object system, The primary goal was to establish a procedure

which could be used for the rernaiider of the modules.

The AAARF main process consists of:

"* The AAARF main menui, a pull-down menu that starts a user selected class, ipos up the

environment control panel, pops up the central control panel, or put.s up a help screen,

"* The Central control panel, a button window that is used to simutaneously control multiple
algorithms,

"* The Environment control panel, a button and text entry window that allows the saving and
restoration of the current AAAR.F window configuration.

Several changes to the AAARF main menu were required because frame control no longer lies with

the application. SunView AAARF provided "iconify," "de-iconfy," and "kill" as options in the

main nienu. These were removed from the main menu and added t.o the main framie event hndler

(see Section 4.3.3.4).

4.3.5 The Common LibraryI The common library is one of tle two most complicated

modules in the AAARIF system. It consists of the following files: aaarf('ommon.c. aaarfMaslcr.c,

aaarfRrcordcr.c, and aaarfViews.c. The Master Control Panel, as discus,,d in Section 1.3.3.1, was

elevated to base frame status ar- the Algorithm Frame was made a child of the Master Control

Panel. These changes proved relatively straightforward, although there was some initial difficulty

because of weaknesses in the event handling descriptions in the reference n uauial [10:(]hapt ers 6,'_', .

The Algorithm window in SunView AAARF has a. pull-down menu associated with it. much like

le i'iain process. T mhis menu pops up the Master Control Panel, the Animnation R ecorder. the

Status Panel, and has nienu picks for "iconify." "de-iconfy," and "kill." In addition, in SunView

AA A \F. selecting a class from t le inain menul causes only the Algorithnm window to be displayed.

4-19

To see the Master Control Panel requires a menu pick from the Algorithm window nenu. Since

the Algorithm window was no longer the base frame, these functions had to be placed elsewhere.

The only alternative was the Master Control Panel. The Algorithm window menu was deleted and

buttons were added . the Master Control Panel for poping up the Status Panel and the A nimiaiton

Recorder (see Figure 4.6). A positive side effect of changing the base window to the Master Control

Panel was that it necessitated showing both the Algorithm window and the Master Control Panel

at main menu selection time. This is seen as a plus because with SunView AAARF Ihe first act ion

users normally take is to pop up the Master Control Panel.

Most of the effort in the common library was spent in developing an intuitive, easy to grasp

layout of the Master Control Panel. The SunView AAARF panel is well organized and functional.

but several new panel objects are available in XView which are not available in SunView. One in

particular is the non-exclusivc panel choice ilem. This panel object, displays lists and allows users

to select multiple items. For example, there are seven possible views for the ArraySort. class. UTsers

may choose to display up to four of these simultaneously. SunView AAAIRF implements this as

a non-exclusive choice pull-down menu. To select four views requires three right click-and-drag

menu pull-down operations (there is always one view). With XView. all seven are displayed as

small checkable boxes with labels, much like small square but tons with text beside thein. Views

are selected/de-selected with a left, mouse click. This type of interface object is very fast. and very

intuitive. Improvements of this type in the user interface satisfy the end user "User Friendliness"

requirement specificed in Section 2.5.1. The original Masler Control Panel is shown in Figure 4.5

all(l the ridesigned Master (ontrol Panel is shown in Figure 4.6.

The AAAP F design precludes fully testing the Master ('ontrol Panel without a comnpatiible

algorithm class. This is because the algorith1m classes provide muost of the NMaster (Control Panel's

functionality. The AAAiP F conunon library provides only a skeleton control panel with sewveral

co-mmon functions. Bultons. sliders. anid mienus picks for CONTHOL, INPIPT, AL([OlIllT XI,

4-20

LAYOU'r, and VIEW options are added to the Master Control Panel by classes at run time. The

ArraySorts class was chosen as the next module to be converted because it provides the most

comprehei.c,ive set of interface options.

4.3.6 The Array Sort Class Converting the ArraySort class was relatively straightforward.

A great deal of time was consumed in experimenting with the various XView panel objects in an

attempt to reduce the size of the Master Control Panel. but this turned out to be a futile effort.

In the end, real estate savings were sacrificed in favor of ease of use. The Master Control Panel

interface is very solid, but testing with the ArraySorts class uncovered a problem in the event

handling structure.

The XView canvas object provides an event hook (in the form of an attribute), called the

CANVASREPAINTPROC for a user supplied repaint procedure. The recommended method for

redrawing a canvas window is to provide the name of a redraw procedure for this attribute [10:91-

98]. When the server or the window manager detects that the window requires redrawing (a

resize operation, or the window is uncovered), this procelure is called. In SunView. this is not a

problem because the frame receives he event: only one event is generated regardless of the number

of canvases attached to the frame. In XView, the canvases themselves receive the event. Since

AAARF allocates all four canvases at run time, each canvas receives the event, resulting in some

very annoying flashing while the screen is repainted four times. A -workaround" was developed

btt it proved extremely difficult and time consuming.

"The workaround involved adding special conditions to several of the event handling routines

in the conmmon library. It was largely an experimnental process. The problem is compounded by

tie fact that the event network. e.g. which functions get which events in what ord•er, is not well

defired in [10]. To further complicate the issue, mulitple WINI{ESIZE notifications are generated

whenever the base frame is moved or resized, which adds to the flashing problemi [10:122]. This

problem is a dIirect result of having four views assigned to one window. X View allows this. but

4.-21

HELP Animation Master Control Center TCLOSE

-------------------- CONTROL OPTIONS-------------------

SG STOP- RESET -]

Animation Speed: [100] 0 100

Single Step D f Break Point Selector I

--------------------- INPUT OPTIONS-----------------

Pattern : CLinear # Cycles : L ri Order : % Normal

Elements: [25] 10 256

Sortedness: [0] 0 100

Seed: [50] 0 OEM 100

------------------- ALGORITHM OPTIONS------------------

Algorithm Type : C.,Straight Insertion Sort

--------------------- VIEW OPTIONS--------------------

View Selector View Layout: C Stacked

Figure 4.5. SunView Master Control Panel for the ArraySorts class.

1-22

................. - .1
......

...........................

................

....... ...

..................

a e............. . STO P RESET..... iix 'A"Xp.: NS..............
Aut Single Stop

........................aB. M.'I -.0.0 d'on............................ " .4 4- , I. :......-XXow............................... ý': :' : -
I N P U .T- P. -T.- t ' 0"', ̀ N- st. x ::- " .::::*i, I ... -....................... d I Norm al

.......... : :.::*::, ::..
. M j 256:::X ::-X I r

.................
. 00...

sted: j 100
..............I17 TIO NS...............

......
..Al Orlth

.......................................
MYOP.-TY-1 N S'..........

......... .
d Corner.

..... ýýV.JýE ff IONS......... ...

stictes _j Dots, _j movigs compares

RainboWrTree _j History

Figim, 16. X'View Master Control Panel for Ilw A rravsort s class.

1-23

there is no discussion in the manual regarding the use of canvases in this manner. This is very

likely non-standard use of canvases and it reinforces the opinion that the current method of having

four views per window should be replaced with individually windowed views. If this is done, then

the default event handling for canvases can be used, significantly simplifying the event handling.

Once the ArraySort class was completed, most of the "new" work replacing the GUI was

(lone. The Traversal and Traveling Salesman classes were converted very quickly. That completed

the serial animation classes. What remained was the parallel classes. The "other" of the two most

complicated modules was next: the Parallel Views library.

4.3.7 The P Views Library The Master Control Panel for the parallel perfo:mance class is

shown in Figure 4.7. The panel is not large enough to hold all of the control parameters necessary

for parallel performance monitoring. As a result, an additional popup parameter panel was added

by WVilliams in 1990 [29]. The panel is shown in Figure 4.8. The panel is activated by left clicking

on the Parallel View Options button on the Master Control Panel. The work in converting

the PViews library was relatively easy, but tedious because of the sheer volume of panel objects

between the two panels.

The PViews library is designed to allow each parallel class to add algorithm specific panel

items to the Master Control Panel and the Status display after the parallel performance objects

have been added. In effect, this amounts to creating an object, and then updating it. by adding list

items. The SunView panel objects support this very "nicely," but XView does not. This problem

occured in two places on the Master Control Panel, the Break Point and VIEW OPTIONS

panel items. The changes resulting fromn this loss of funct ionality are the same for both panel items

so only the VIEW OPTIONS item is discussed. (The discussion assumes the panel item has

already been created in aaarf,,aslerc.)

The algorithm class is required to provide the function .st Vil' wleCm() to ad(l the list of views

to t he panel object. A call to the PViews library function setl'Viewi/em gets the default parallel

4-24

Parallel Verformance

HELP) i�ECO�OER STATUS I $TOP'

------ s- CONT�L OPTEON$ -

Ai�n�tloft $pted: IQ4� � I 1� SV#gle epJ

Bakftl#t� j

D�f�wit Ofr�
-rn--rn----'

C�rnim�#M U.�

---- � �ERV42�RMA NCE I�I$ VIA V..PARA �4ET. E�$.

Oata S�un�e� � IJve �j i� � J LiveIWr�tet� fB�

Parallel View Optk�ns)
�-"�-'�------ LAYOUT OPTIONS

vf $t�k�ti J 5tdehSid0JCQrn�rs

------. '- VIEW OVTIONS

�' Anknat� J Me ei.engths .j

eynrnan J Ca

emm Stats J C�>mm Load J Queue Size

J Messaq. �uu� J RV.........

Figure 1.7. Master Control Panel for the Parallel I�erforniaiiee (lass.

4-25

...----------...

..................................
..................

...

.........'Ir."..'.. -, , , , , , , * * * :.:.:X ---- 1 . .. :::.. I.:
............ IM...............- ------------ -- -------- -.0w

x w.'

.......... ..
.

...........

...

. ...
.....

............

.
...
......................

.....

...
.......

.

.
...........

...
..........

:::iiw a
................................

...............
................
.*,*-...........

..........
.....

........... .
...........

....
.......

......... I
..........

L.-j

Figure 4.8. Parallel View Options panel.

4-26

performance views. This is followed by a whic loop to add the class specific views. The original

AAARF code for setting the VIEW OPTIONS panel item is shown below:

void setViewItem(viewItem)
Panel-item viewltem;
{

int index = 0, menu-index;
static char *viewNames[] = {"Sticks",

"Dots",
"Rainbow",
"History",
01:

* set up the built-in views first, the number of other views varies
*/

menu-index = setPViewItem(viewItem);

* now set up the algorithm data views
*/

while(viewNames [index]){
panel_set(viewItem, PANEL_CHOICESTRING,

menu-index+index, viewNames[index],
0);

index++;
}
panel-set-value(viewItem, 1);

The XView panel object needed for the VIEW OPTIONS panel function does not support this.

Consequently, the set V'ieilterno function call was changed to:

void setViewItem(viewItem)
Panel-item viewItem;
{

xv-set (viewItem,
PANELCHOICENCOLS, 3,
PANELCHOICESTRINGS, /**** Default Parallel Views ****/

"Animation", 1 */
"Messag,- Lengths", /* 2 */
"Kiviat", /* 4 */
"Feynman", /* 8 */
"Gantt", /* 16 */
"Utilization", /* 32 */
"Comm Stats", /* 64 */
"Comm Load", /* 128 */
"Queue Size", /* 256 */
"Message Queues", /* 512 */
"RVA",/* 1024 */
/**** Algorithm Specific Views ****/
"Sticks",
"Dots",
"Rainbow",
"History",
"NULL,

PANEL-VALUE, 1,
NULL);

From a software engineering persj)ect iv,., this is riot a good solution. A belter approach defines

an array of strings in a header file containing tlhe default views. with enough rooni for any ad-

.1-27

ditijonal class specific views which might be adlded. This is then passed as ain arg-ument to tilie

PAN EL-CIOICE-STRINGS. It doesn't work. The data type for the A L'll(C5RI S

is a -list" of character pointers (chiar *). Whatever a "-list" of character pointers may be, it's

dehinatelv not an array of st rings. This problem is typical of those encountered withI XView panel

items.

Once the P Vie us library was completed, the three parallel classes, the Paralict P(fo rutan c(

h n-irs. Parallel Sort, and the Pa rallci _';(l Cor ring Proble in were converted. By this time. famil-

iarit v withI X View and AA ARIF had reached the point that converting thlese Ifhree mnodu les did not

require any special effort.

4..8 Is ncral Results D~uring testing a problemn withI the remote aniniar ion syst emi was

discoveredl. '[le background process IPRASEBG 's attempt to conniect to the iPS(/2 cauised twvo

shiellI error messages to be printed on the workst ationi window front which AA\AR F was lauinichied.

Th le error me'ssage's indicated that a stly command opt ion was illegal. A AA RI does nothing withI

the sIlq comimand . 'The problem turned ont to be in the sh r'c file on lhe i PSC/2. '[le file had

two lines for setting the (rame and kill values.

stty erase '-?1

stty kill '-C'

'These two entries had never been a problem w~hen rising the SunView A AARFI. even w~hen

connecting fronm an Openwindows environment. Bunt there is somnethling about tile X \ie(w version

which cause's these two lines to generate an error. The problem manifested itself in strange ways.

Sonliet inmes thle animat ions woul d run iito completion, and sometinmes t hey would simply freeze thle

mionit or. Occasionally. tilie anim~at ion window~ would just quit out right. The problem was "solved"

by moving these two lines to the login file.

1-2S

The ArraySorts class was thoroughly tested by the AFIT CS('E586 class. Students were

given a homework assignment requiring them to run the AAARF ArraySort class and evaluate it.

It. was decided to allow the students to use the new XView version. This was a difficult decision to

make because work on the serial classes had just been completed, but very little testing had been

done. Twenty-three students used AAARF over about a one week period. The results were very

encouraging: no failures or errors were reported.

The parallel performance views have been thoroughly tested. Four parallel algorithms were

instrumented and animated. Again, no problems were reported.

The process for converting modules developed during the conversion of the AAARF main

process proved very successful. By the time the AAARF common library was completed, enough

proficiency with XView had been garnered that the remaining modules were completed relatively

easily. The value of having a conversion process cannot be over emphasized. It prevented oversight

and helped immensely in partitioning the work to prev-nt overloading.

Finally, the new user interface has considerably simplified the use of AAARF. The XView

interface has much the same look and feel as the Openwindows applications supplied by Sun. The

annoying screen flashes of the SunView interface are gone, as is the necessity of having to remember

two dhifferent interface protocols.

4.4 ,Sunmmary

This chapter detailed the criteria used to select XView as the X-AAARI" GUI. The design.

implement at ion and results of implementing the GUI were presented. The resulting system has been

thoroughly tested in accordance with Section 1.3.2 and shown to perform as well as the SunView

version of AAARF.

4-29

V. Conclusions and Recornmeindations

This chapter presents conclusions regarding the longevity and durability of the new graphical

user interface and suggests ideas for future work in this critical area. Recommendations for simpli-

fying AAARF maintenance and recommendations for future algorithm animation research are also

presented.

5. 1 Conclusions

The XView GUI for AAARF has met or exceeded the requirements established in Sec-

tion 2.5.1. As stated in Chapter IV's summary, the system has been thoroughly tested and the

results are very encouraging. The look and feel of the Openwindows environment has been captured

and AAARF's "ease of use" has improved accordingly. In the past, it was very difficult to perform

maintenance on AAARF in the Openwindows environment because the SunView windows usurped

the screen. With the new system, it is now possible to run AAARF while simultaneously analyzing

source code files. For users familiar with the Openwindows environment, interacting with Sun-

View windows has a feeling that is distinctly "unnatural." This was always present with SunView

AAARF (and a constant source of comments like "Oh, well that's certainly obvious." drenched in

sarcasm) but has completely disappeared with X-AAARF. Although they were vigorously sought,

not a single negative comment specific to the u.,er interface has been received.

The decision to use the XView toolkit, appears to have been a good one. In general, the

toolkit proved very easy to learn. The XView programmers guide [10] and reference manual [17]

are well organized and complimentary. The reference manual was especially useful: once the basics

of a particular object were understood, the reference manual usually sufficed.

For the time being, the XView interface is sufficient. It. provides access to the many advantages

of the X Window System and it. is entirely adequate for the user interface neelds of the AAARF

system. It is riot clear how long this will last, although Sun appears committed to long term support

5-1

of XView. If this continues, the XView interface may never need replacing. The state of AAARF is

always of concern because it is by definition a system whose requirements are constantly changing

- that is the nature and reality of research. The simplicity, elegance, and shallow learning curve of

the XView toolkit are very desirable characteristics in such an environment.

The XView interface is not a solution to the larger problem of portability. XView is not, widely

available and it is not yet clear whether it ever will be. Greater availability of XView will not solve

the portability problem unless the Sun Notifier system is included, or AAARF's dependence on the

Notifier is somehow eliminated. This is not. a simple problem - AAARF uses the Notifier for much

more than window event handling. Indeed, much of the inter-task communication control hinges

on the Notifier. The dependency on the Notifier for inter-task communication can be solved but

only at the expense of a fairly large redesign effort.

In many ways, portability is a non-technical issue. For AAARF's intended uses at. AFIT,

portability is a not an issue. If it is desired that AAARF be distributed outside of AFIT, then

portability is important. Distributing AAARF outside of AFIT is risky. There is no formal mecha-

nism at AFIT for supporting, maintaining, and distributing software. The AAARIF thesis student,

(assuming there is one) is the only individual capable of answering questions or solving problems

that might arise as a result distributing AAARF. and it, is a siogularly bad idea to burden this

individual with such a responsibility. AAARF could be distributed "as is" to interested users or

researchers with the understanding that no formal support, is available.

In reality, the problems of configuration control and maintenance are much more pressing

issues. There is no AAARF "corporate memory" at. AFIT. New thesis students are largely re-

sponsible for teaching themselves AAARF. As the size and complexity of AAAIRF grows, this task

becomes more and more difficult.

5-2

5.2 Recommendations

5.2.1 AAARF Maintenance Without a doubt, the overriding difficulty in this invesliga-

tion was in understanding AAARF. There is precious little detailed documentation. Hours were

spent pouring over code and doing execution traces using diagnostic print, statements. AAARF

cou!d seriously benefit from better documentation. The programmers manual provides a high level

description of the client programmer interface with enough detail that users can implement a new

class with a minimum of understanding of AAARF's control structure. There is no equivalent

description of AAARF's control structure that would allow someone to make changes to the design

of AAARf with the same "ease."

Currently, there are two manuals in the AAARF documentation set: the "AAARF User's

Guide," and the "AAARF Programmer's Guide." A valuable addition to this set. would be the

"AAARF Maintenance Manual." This manual should contain as a minimum the following:

"* A graphical representation of the event handling structures.

"* A detailed description of AAARF's use of the Sun Notifier. This should be coupled with the
event handling item.

"* A flow chart of the control structure that is driven by the event handling structure.

"* An annot<,ted, graphical representation of the major data structures.

"* A description of the inter-module relationships as they relate to the control structure.

"• A graphical representation of the programmer interface discussed in the programmer's guide.
This is not a client programmer issue, this information is necessary to fully understand the
control structure.

"* A listing of the Unix commands commonly used in maintenance and debugging. For example,
the grep command is often used to locate the file containing a function or other item of interest.

"* A detailed explanation of the AAARF Makefile facility.

"* A flowchart of the network connection and management program PRASEBG. This will do as
a minimum. The ultimate goal is to restructure and simplify the network interface.

"* A section discussing the PRATE instrumentation software, the communications libraries, and
the clock.

"* An explicit, example of PRASE instrumentation. (This has been done, see Appendix 13.)

Some of the above information is available in the three AAARF theses. Some of it can be

foumi in the user's and programmer's guides, and some as comments in the source code. What is

lacking is a central repository for this critical information. A maintenance manual would solve this

5-3

problem, but this is a very complicated issue. This isn't research, so the question becomes, "Who

should do it,?" One possible answer is to have the AAARF thesis student(s) do it, as a special study.

The value in doing this is obvious: it would prepare the individuals involved for research involving

AAARF and provide an improved training environment for future AA ARF researchers. If AAARF

continues to grow, and this problem is not addressed soon, AAAI{F's usefulness as a classroom aid

and rt.search platform will be endangered.

5.2.2 AAARF Training A more formal process of training AAARF researchers must be

developed. The current process of encouraging students to "get inside the code" is no longer

suflicient, AAARF is simply too large. This thesis cycle, the new AAARF thesis student was

assigned to the current student as part of a special study. This proved effective in helping the current

student pass along lessons learned, and many of the insights and tricks garnered during the course

of doing research were passed along. There is little or no research value in this information. Instead,

it is the kind of peripheral knowledge that never makes it into a thesis paper or documentation

but i., so vital to the success of a project. (Examples include knowledge of Unix and C, system

quirks, shortcuts and tricks, LaTeX, etc.) This process can't really be formalized in an academic

enviionnient, but an informal process is better than no process.

5.2,3 Indiiiiduall.j Windowed Viev-s This is a very important requireme,,t. The motiva-

tions for individual algorithin vi,-w windows were presented in Section 4.3.3.1. T'he individually

windowed algorithm views should be implemented at, the '.rst available opportunity. The original

AAARF design appears to have developed around the idea that an algorithri's animation is the

central conceptual entity in describing an algorithm. In truth, it is only an artifact of the current

state of the algorithm. From the point of view of AAAiHF. an algorithin's st,ife is really the sunm

of all the window states associated wi' i that algorithm, plus it's own internal state. Ideally. they

are all consistent. In practice, they are rarely in sync I 'cause the animation and the algorithlm are

5-4

separate processes. Which window is considered the "controlling" window in such an environment

is immaterial. The decision is really an implemnentation issue.

To implement this recommendation requires changes to the parent-child relationships between

the algorithm's windows and changes to the event handling and control structures which inanipn-

late and track the state of the algorithm window and the algorithm itself, The best. approach is to

make the Master Control Panel the base window for each animation class, and all other windows

subordinate. The necessary changes to the parent-child relationships between the Algorithm Win-

dow, the Master Control Panel, the Animation Recorder, and the Status panel were implemented

as discussed in Section 4.3.5. Because of the requirement not to make major design changes during

GUI replacement, no changes were made to the control or data structures. What remains is to

modify the control structures which manipulate the algorithm VIEWSTATE data structure and

the AAARF AAARF..STATE data structure and undo the event handling work-around described

in Section 4.3.6. Before starting, a careful analysis of the impact of doing this should be done.

5.2-4 AAARF as a Classroom Tool The Cllunt Programmer Interface Currently. the

learning curve for animating an algorithm as part of a classroom requirement puts it beyond the

capability of most students. (A long term solution to this problem is discussed in Section 5.2.5.)

Analysis of the problem indicates that the real issues are graphics programming and interfacing

with AAARF. Students have the ability to design and iniplenient algoritions of moderate complex-

ity within a reasonable time (sorts, graph searches. traversals, 1tc). But, the additional task of

,developing animation graphics and inicrfacinq the alqorilhin and thfc graphirs with .,AAA RI puts

this effort beyond that which could reasonably be expected in a ton week course. 'I'There is so much

to le;,rn, in such a short amount of tine. that thle educational value would Ie *jeoJ)ardized.

The near teri solutioai is to develop a -student' animation class which already incorporates

everythint nieeded for animation except the algoritlhn, which the user supplies at run tinie. This

requires the ability to do dyuainic linking (such as that foun iM re-ent rant OS routi.os and 1i-

5-5

braries). The functionality to simulate this is built into AAARF in the form of socket based IPC'.

AAARF simply treats algorithins as socket based "data generators" for it's animation programs.

Conceptually, it's very simple, but The suggested procedure for implementing this is:

1. Identify the specific algorithm classes (as defined in[4:l 1-14]) that are required to support the
chosen curriculum.

2. Develop the necessary graphics routines for the chosen classes. This includes identifying the
Interesting Events (IFs) needed to support the classes and their associated actions on the class
data structures. It also means that the Master Control Panel and Status Panel functions to
control execution be developed. Included in this is the requirement to prompt users for the
name and location of their algorithm. This is the responsibility of the "student" class.

3. Provide to the users the lEs, their definitions, and a brief description of their use.

4. Provide a method for interfacing the user developed algorithms with AAARF. This must be as
close to a "cookbook" recipe as possible, probably a Makefile in which users simply substitute
the name of their program for a "dumtny" nmine. This may well be the most difficult part of
the process.

The perceived method for using the "student' class is:

1. start AAARF

2. from the AAARF main menu, select, New algorithm Iiitdow -> Studieit

:3. on the "student" Master Control Panel, click-select Load Algorithm

4. on the poped tip menu, enter the path and name of the algorithm

5. once the algorithm is loaded, normal AAAIR F interaction applies

I 'sers can then experiment with instrumenting their code and not have to concern themselves with

writing graphics routines and interfacing with AAARF. This could be a very useful addition if the

goal of using AAARF in the classroom is to focuses on algorithm behavior.

5.?2.5 A Formal Specification Languagc for Algorilthm .I4n'aton'Fi The process described in

the preceding paragraph can he treated more formally. using lihe "student" class as a baseline.

The lterucsting Ecnt concept, can be use(d as a basis for the development of a tormal spocification

language to describe animations in terms of graphics operations on visual represent at ions o' data

structures. The expected benefits of such an hierarcical system include simplifying the process of

animating algorithms. and increased flexibility arid expressiveness in animating algoritInns. ['lie,

goal is to logically distill out of the animation process the necessity fr users to write graphics

5-6

Graphics

GSL
Routines

Figure 5.1. Proposed environment for the developmient of a formal specification language for
algorithm animation.

routines, while still giving them the ability to specify and configure graphics entities. The ability to

abstractly specify and configure graphics entities is missing from the solution recommended in the

previous section. A prototype environment for the development and testing of a formal specification

language for algorithm animation is shown in Figure 5.1 (This prototype is due to Bailor [1]).

Formalizing the Interesting Erent concept is based on the hypothesis that, each AAARF class

can be treated as an application domain. A domain specific language can then be defined for

each class. The domain language describes the data, operations (i.e., productions). and allowable

states for the class. Two specification lHnguages are necessary: the Graphics Specification Languagc

(GSL) and the Inlcresling Eevent Specification Language (IESL). The GSL directs the niainpulation

of graphic entities and the IESL describes the state of the algorithm. The GSL should be domain

independent, while the IESL is domain dependent. An Animation Gcnerator parses annotated

progranms and produces two outputs: the ., ugmrntid Application Program (the instrumented algo-

rithm) and the Graphics Rouiincs (the animation process). U'sers interact with these through the

AAARF supplied class Master Control Panel.

If c||rrentlv defined A.AARF classes are treated as individual domains. then by definition, each

class' set of IlEs forms a basis set for that class, from which all possible states for that algorithm

class can be formed. If this level of abstraction is too specific. then some subset of all the lEs

5-7

currently defined for AAARF can be used to describe broader classes. In any case. the I's already

defined for each class are a natural starting point in formulating a formal language.

Unfortunately, the SGL graphics operations are not so simple. Issues to consider are:

"* Level of Abstraction or Icons Does the language manipulate points and lines, or higher level
objects like polygons.

"* Static vs. Dynamic How is movement defined?

"* Visibility How is scale defined? Color?

"* Relationships Can relationships between objects be formalized? How does this affect, Move-
ment?

"* Construction Can aggregates be formed? flow does this affect movement and color'? Visibil-
it V?

Currently, classes define their own graphics routines and register them with AAARF at link time.

Classes do not have simple access to each others graphics routines. A better approach is to build

into AAARF a basic graphic entity model and then allow users to choose, through the GSL, the

entities and relationships which best fit their needs.

The discussion thus far assumes that it is the user who defines the relationships between the

IESL and the GSL through the appropraite use of each language. Exactly how this is achieved is

not clear. In one scenario, the user selects from the GSL the necessary productions to implement.

the desired graphics entities. Then, tlhin ugh some as yet undefined mapping process, the domain

specific IESL productions operate on the objects output by the GSI, productions to produce the

desired effects on the screen. Various levels of observation are possible, depending upon the user

and the algorithm.

The intent, is to provide a formal mechanismn for animating algorithms. An interesting side

affect of such a system is that it is, in a sense, "reverse engineering." Given an algorithm, what

formalisms are required to abstract. the control to a higher level, e.g., a visual level where only

qualitative relationships are observed? This is ain interesting problem because it appears to have

widespread application, not. only in algorithm animation, bit program visualization as well.

5-8

The worth of such a system is measured in it's ease of use. It serves no purpose to take all

already difficult process and abstract it to a process at a higher level that, is equally difficult. In this

regard, the GSL is likely to be the most difficult, to formalize because the two primary requirements

for such a language - expressiveness and simplicity - are incompatible features. Effective use of

the GSL depends upon users' understanding of the domain and the associated domain-specific

algorithm animation environment.

5.2.6 AAARF Responsibility In a school which prides itself on it's Software Engineering

program, it, is an irony that no formal software Configuration Management program exists. This

issue affects not only AAARF, but, to my knowledge, every other research program at AFIT involv-

ing follow on software development. Someone has to assume the responsibility for ('onfiguration

Management, of AAARF. This is best done by a software engineer or analyst in a full time position.'

The motivation is very simple: without an effective configuration management program a lot of

research effort, is either lost, literally, or wasted trying to restore previously functioning software.

.5.2.7 The Future of AAARF In many ways AAARF has failed to live up to the expec-

tations of it's designers. AAARF is too complicated for really insightful animation development

as part, of a classroom exercise, although AAARF is very useful as a pedagogical tool for studying

algorithms at. an "observational" level. If use of AAARF as an expanded educational tool is a goal.

theii the recommendations of Section 5.2.4 can be implemented to solve this problem. Failing to

do so will likely result in continued non-use of AAARF for these purposes. This opinion is sup-

ported by the fact, that. no one outside of the two thesis students who developed AAA HIF haie ever

implemented a new class.

The use of AAAIIF" as an analysis tool for parallel computer p rformuanc(nionitortin, is a

very delicate issue. There are other tools available, such as Paragraph, if the interest is solhly

'I am keenly aware of the implications of this statement. If such an indiviual cannot be hired], lhen ti t'1 on1V

alterantive is the AAARF thesis advisor. Nevertheless, researh software is a valuable asset and shcild be treated
as, slich.

5-9

in performance monitoring (see Section 2.4.2.2, page2-9). Whether Paragraph is "better" than

AAARF is a very complicated question. Certainly Paragraph is not as general in nature as AAARF:

it, does not, support. algorithm animation, and it does not support on-line performance monitoring.-2

However, AAAR.F's parallel performance animation repetoire is not as complete as Paragraph's. For

performance monitoring, AAARF is entirely dependent upon the PRASE execution trace software.

PRASE is non-portable; it, runs only on the iPSC/2., It is possible to adapt PRASE for use with

other parallel computers, but it's not clear that this is desirable. Another alternative is to modify

AAARF to accept PICL trace records (see Section 2.4.2.1, page 2-8). PICL is supported by ORNL

and is becoming something of a trace format standard, and PICL supports a number of parallel

computer platforms.

As pointed out in Section 1.2, page 1-4, AAARF is based on a very solid design. It is doubtful

other performance animation systems share this heritage. With the above in mind, there are two

possibilities:

1. Continue as is. The AAARF system is relatively stable and there is much that can be done
in the arena of parallel performance monitoring. But, there are problems with this option:

"* The research content of much of this work is questionable.4

"* The size and complexity of AAARF limits what can reasonably be done because so
much time and energy is expended in getting started. Researchers must first learn
the basic AAARF system, then the remote animation facilities, and finally the remote
instrumentation facilities. And, this assumes they are already familiar with Unix and C.

"* The AAARIF systeml is in a constant state of flux, limiting its usefulness to other re-
searchers. This is amplified by the lack of Configuration Management.

2. Abandon the parallel side of AAARF and concentrate on perfecting AAAI HF as an educational
tool and a research platform for formal animation specifications. Adopting this option (po-
tentially) sacrifices the ability to animate parallel algorithms. There are several advantages:

2 Paragraph uses file input. A A A R F is a direct connect or on-line system. Admit I Iedly, there is ,r, Pr, ,t fly no real

ad vant age to on--line mode over file input tilode bIecauise net work bandwidths are too narroiw to allow ani imal illms t,)
rim in aony where near real time. This may not always be true. A long ternt goal fir A fA[I is to be able to run
ani mat ints int!eractively. in real tijte. This capability does t'ot currently exist in AAAFt , but hebt asic fuoct ionality

to supp)ort it is in place.

T'RA.\SE' is being ported to the iPS(?/86;O, but this does nothing to enhance its portability. Intel is discontinling

suplort of the iPSC/2 at the end of calendar year '92, so PHASE is still, effectively, a single system platforrm. 'F[ie
two co•ipiiters are so similar that only a recornpile is required.

[There are always tral•rofis in alt academic environment between what is research and what is develpment. -This

is a particular problem at AFIF because students are reqitired tIi • •irplete the prograii in 18 nionths, and extentsiois

are rare.

5-10

"* Adopting Paragraph/PICL allows researchers to concentrate on using these tools for
analysis, rather than developing similar capabilities. 'The general trend in parallel comii-
put-ers is to incorporate performance monitoring inst rumet at ion anld animation facilities
directly into the architecture and operating system. Some, like Intel, are using P IC'L and
Paragraph. This knowledge weakens the motivation for continued in-house development.

"* The potential for research in formal specifications for algorithnm animation appears in-
limited. This is a new and exciting area and there is munch that AAARIF's current
configuration has to offer, starting with the recominendations in Section 5.2.1

" The use of AAARF as an educational tool has great potential if the previous item is
pursued. The system described in Section 5.2.4 could eventually be replaced by a more
formal method based upon formal specifications.

uhich path to choose is a difficult decision. Bloth would be ideal. I n fort unat ely. to date, there

has only been one AAARF researcher per thesis cycle. To pursue both paths requires two peo-

ple. It light of the current situation regarding downsizing of tle Air Force, thiis is not likely to

change. Much has been invested in AAARF's parallel capabilities, but largely at the sacrifice

of AAAARF's contribution as an educational tool. This is unfortunate because both are valuable

research activities.

In the final analysis, tihe decision is not so much which avenue to pursue, it is more a question

of where to focus a dwindling resource.

5-I1

Appendix A. A BRIEF Discussion of X

X was (is) intended to be a distributed, device independent user interface platform. It's

primary use is in the development of device independent (e.g. portable) Graphical User Interfaces

(GUIs). X does not contain any particular user interface styles. Instead, it provides a set of device

independent tools from which any number and kind of user interfaces can be built..

X is based on the client-server model. The core of the X system is the server. The server

(display in X-ese) allocates and manages all the necessary data structures required to support a

screen (output device in X-ese). There is one server per cpu, but a server can manage more than

one screen (analogous to a file server with diskless clients). Applications programs using the server

are known as clients. Any application which complies with the X protocol (an asynchronous byte-

stream protocol) can communicate with the server. Obviously, a server can connect to many clients.

but a client can also connect to more than one server. A client and server need not, be on the sanm

machine, or even the same network.

The server provides the device independent interface to the platform on which it resides. A

specific version of the server must be installed for each platform. For example, in a networked work-

station environment, each workstation has a device dependent server running in the background

controlling the screen.

The lowest level of access to the server is directly through network packets and byte-streams.

"This would be analagous to microcoding. Not recommended. The next level of interface is through

specific language libraries which provide a complete set of window management functions and

capabilities. This is the assembly language level of X. XLib is the (language interface (there is

only one per language). Above the library level are toolkits, such as the Xt Inlrinsics (also in C).

Xt is built on top of XLib. (There are a number of other Xt level interfaces to X Windows built

on XLib.) The highest level interface is what is generally known as a set of widgets. Widgets

are basically a collection of objects built using a toolkit and XLi1 w hichn Implennt a set of user

A-I

interface functions. For example, menu buttons, file dialog boxes, scroll bars, etc. are typical

examples of widgets. Motif is a widget set. In general, a toolkit such as Xt provides a set of server

interface functions for managing windows and a set of widgets for user interface functions. While

the typical application may use the top three levels (down to XLib), most of the work is done at

the widget and toolkit levels. However, most programmers never actually deal directly with XLib

or Xt objects because the attributes associated with these objects are available through the widget

objects via inheritence.

A-2

Appendix B. A Simple Example of PRASE hnstrum-ncrtation - The Ring Program

B. I Introduction

This document presents a "simple" example of how to instrument an iPSC/2 program for

animation with AAARF. The example program is the Intel supplied ring program. Read this

entire document before attempting to run the ring animation. Don't be dismayed by the size of

this example. This is Unix - it's supposed to be hard. If it was easy, it would be on a Macintosh.

This example is divided into four sections:

"* OVERVIEW (B.2)

"• Instructions for RUNNING THE ANIMATION (B.3)

"* Instructions for BAILING YOURSELF OUT (B.4) when you lock up the system

"* Instructions for INSTRUMENTING THE RING PROGRAM (B.5)

"* SOURCE LISTINGS (B.6) for the ring program

Examples of other parallel programs which have been instrumented can be found in other directories

off the /usr2/aaarfDEMOS directory.

B.2 Ouerriewu

The iPSC/2 /usr2/aaarfDEMOS/ring directory contains the C source and makefile for the

instrumented ring example. The intent, is to provide a simple example of how to instrument a

hypercube program for animation with the AAARF Parallel Performance Views class. In this case

there is no AAARF class from which to run the ring program automatically, it must be started

manually on the cube. The directory should contain the following files:

"* 1EADNIE

"* host.c

"* node.c

"* makefile

"* rhosts

B-I

The directory contains a modified version of the Intel ring demonstration program. The

ring demo has been modified to aconitnodate AAARF instrumentation. Ring count reporting has

been eliminated (just because, this is not necessary for AAARF instrumentation), and a terminate

message type has been added since the original version has no facility for gracefully terminating the

node program (which IS necessary for the AAARF data collection system to work properly!). The

original version of the ring program has facilities for multiple runs, which has also been removed.

The following description of the ring demonstration is taken from the Intel README file which

accompanies the ring demonstration program.

The host program loads the node program and prompts you for input as to the number of

times to go around the ring and the length of the message you want to pass around the ring.

Node 0 receives this information and sends a message of the desired length to the next node

(1). As each subsequent node receives the message, it, sends it onto the next node in the ring.

After the desired number of rounds have been completed, it reports the time the message spent,

"circling" the cube. To exit this program, enter a negative number when prompted for the

number of times to go around the ring.

B.3 Running the Animation

Before you can run AAARF and the ring program you must have accounts on at least one

workstation cluster on which AAARF is resident, as well as the Intel iPSC/2 Hypercube. AAARF

is currently available on olympus and scgraph. To run this example you need to (explained in detail

below):

"* copy the source to the cube and make executables, e.g. compile them,

"* get. the cube,

"* start AAARF,

"* start the host program.

This program works on any size cube greater than zero without modification. You nuist.

know what kind of math coprocessor your cube nodes have. Enter "muake help" to determine the

B-2

appropriate make command to enter to build the correct, executables. (This demo can also be run

without, AAARF instrumentation by editing the makefile - remove the -DPRASE option wherever

it appears - and recompiling.) AAARF runs on your workstation, and the instrumented program

runs on the cube. They communicate over the network via sockets. Because of this, you MUST

follow very carefully the script described below. If you do not, you will likely lock up both your

workstation and the cube. Instructions on how to dig yourself out, of such a situation are provided

later. Finally, AAARF prints certain information and diagnostic messages in the window from

which AAARF was started - you need to be able to see these messages to ensure that AAARF is

functioning properly.

Before running the animation, there are some preliminary steps you must take. Firstr, the

ring program must be started manually from the cube. This means you have to open a window on

your workstation and rlogin, rsh, or telnet to the cube. AAARF connects to the cube using your

userid. For the connection to work properly, you must have a .rhosts file in your login directory.

If you don't already have a rhosts file in your login directory, copy the sample rhosts file in this

directory to your login directory (renaming it rhosts). If the hostname of the workstation you are

running from is not in the file, add it. (You can get the hostname of your workstation by typing

"hostname" on the command line.) Edit the file to reflect, your login name after each hostnaine

entry. (This will be quite obvious when you see the contents of t.te file.) Do all the editing on your

file. If you don't want to edit on the cube (using vi) you can copy the file to your directory on the

workstation, edit it there, and then ftp it back to the cube.

In the steps that, follow, you are asked to interact with both AAARF, running on your

workstation, and the ring demo. running on the cube. Once started, the cube program runs to a

holding point while you interact with AAARF. Do not be concerned, no data will be lost.

To run the ring animation: (C = on the cube, %V on your workstation)

B-3

1. (C) Create the host executable (host) and the node executable (node) from lie source files

(host.c and node.c) to run on CX nodes (these must be copied from /usr2/aaarfDEMOS/ring

to the directory of your choice on the cube):

make Cx <cr>

AAARF does not need to know where you put, the ring demo.

2. (C) Get an 8-node cube named "ring":

getcube -c ring -t8 <cr>

3. (W) Start AAARF:

aaarf <Cr>

If the AAARF bin directory isn't already in your path, the executables are in]

/olympus4/aaarf/bin.

You can prepend the complete path to Lhe name of the program if the location of the exe-

cutable is not part. of your current path environment variable. For example:

/olympus4/aaarf/bin/aaarf<cr>

will also execute AAARF. AAARF can also be rim on the scgraph cluster, use:

-,-cwright/aaarf/bin/aaarf.

4. (W) Ask for the AAARF Parallel Performance Views window

right-click/select "New Algorithm Window-> Parallel Performance Views"

in the AAARF main window

It is recommended that new users also show the Status D)isplay. See si ep (6-W) for instructions

on showing the status of the animation.

B-4

Resize the window to a suitable size. You can move the animation window by dragging the

framc of the window witIh the left mouse button. You can similarly resize the window by

dragging any corner of the window with the left mouse button.

" Warning - If the diagnostic message

"BG: server connected"

fails to appear in the window from which you launched AAARF DO NOT PROCEED,

AAARF has failed to connect to the cube. (Be patient, AAARF is launching a remote

server program on the cube and waiting for it to respond - this may take up to a minuter.

or more if the network, the cube, or your workstation is busy.)

"* Warning -- If the error message

"BG: error binding socket: Address already in use"

appears, the problem can be one of two things:

(a) you have been running the ring demo and you wish to run it again - in this case tie

system has not released (after the last run) the socket id AAARF uses. Va. a few

minutes and try again.

(b) you haven't been running AAAR[" - there is nothing you can do about thils one

(xcept to try another workstation. The socket id AAARF needs is being used by

another process.

"* WYarning If the ,'rror message

"BC: permission denied"

appears, there is a problem with the remote login. Check that you have copied the rhosts

file into your login directory and renamed it rhosts. Also check to ensure that you have

correctly entered the hostname of your workstation, followed by your logi nanie.

5. (C) ExectUte the host program:

B-5

host <cr>

the host. program prompts for the number of times around the ring and the length of tile mes-

sage you wish to pass. The diagnostic message "aaarf-clct connecting to <your workstation>"

should appear in your cube window. It may be interleaved with the input prompts, just ig-

nore it and answer the questions. AT THE SAME TIME, the following diagnostic messages

should appear in the window from which AAARF was launched:

"HBG: trace socket connected"

"BG: alg socket connected"

"BG: command socket connected"

9 Warning - if these diagnostic messages fail to appear, again DO NOT PROCEED, tile

AAARF PRASE data collection system has failed to connect with your workstation.

(Once again, this may take a while - AAARF is establishing the communications link

between the data collection system and the background process, PRASEBG, which is

running in the background on your workstation.)

6. (W) If by some miracle you have managed to make it this far, you can start the animation by

left-clicking in the animation window with the mouse or by clicking on the "GO" button in

the master control panel. There may be a delay of a minute or more while AAARF catches up

with your program. You can monitor the status of AAARF by left clicking on the "Status"

button on the animation's master control panel. If you select the status display, note that

the animation does not proceed until the "current trace time" catches up with the "next

record time." It. is probably best to use the Status Display the first. few times you run the

ring demonstration because there can be pauses in the animation while the ring programs are

doing things which are not related to cube communication (such as opening files, etc.).

7. (W) When the animation finishes, kill the animation window (the status display goes with

it automatically) by right-click/selecting "Quit" froin the master control panel's title bar. If

B-6

you wish to run the animation again with different parameters, wait. a few minutes for the

system to release the socket id, and then ask for a new Parallel Performance View animation

window, as before. It is not necessary to wait until the animation finishes to kill it. If you

choose to kill the animation while it is still running you will have to kill the host program

and the data collection program on the cube host processor. See the section "Bailing Yourself

Out" below.

8. (W) Kill AAARF by right-click/selecting "Kill AAARF" in the AAARF main window's title

bar.

B.4 Bailing Yourself Out

There are several situations which can lead to workstation and/or cube lockup. The most

common error is trying to start the animation before the necessary communication connections

have been established. Whatever the cause, here are some suggestions for extricating yourself

from"terminal lockup"

First try to kill the animation window. If no menu pops lip when you right click in tile

animation window's menu bar, try killing AAARF. If you can't kill AAARF you will probably have

to go to another workstation and remotely login to proceed. In any case, the animation window

and the AAARF main window may stay uip on your terminal's screen. If they do, there are still

AAARF related processes running which will have to be killed mianually. DO NOT try to logout

and log back in - this may work, or it may leave you in worse shape, and(there is no way predict tIhe

outcome. Below are two command line sessions, one front the workstation, and one front the cube.

Type the ps commands, locate the appropriate process id's, arid issue the necessary kill command.

(These are much abbreviated versions of what actually appears as a result of entering these ps

commands.) The processes shown below may or may not show up when you issue thie ps, however,

Bi-7

there will never be any more than what is shown below. Also, make sure that, you release the cube.

lacertae:@6> ps -auxw I grep curight /* workstation */
curight 17886 R 16:34 0:00 ps -auxu
curight 17887 S 16:34 0:00 grep cwright
curight 17880 S 16:33 0:00 /home/hawkeye2/cwright/X/aaarf/bin/aaarf
cwright 17881 S 16:33 0:00 /home/hawkeye2/cwright/X/aaarf/bin/PPerf 5
curight 17882 S 16:33 0:00 /tmp-mnt/home/hawkeye2fcwright/X/aaarf/bin/PRASEBG 6
curight 17883 S 16:33 0:00 rsh cube386 /usr2/aaarf/server lacertae
lacertae:@Q> kill -9 17880 17881 17882 17883

% ps -elaf I grep cwright /* cube */
10 S cwright 7194 csh -c /usr2/aaarf/server lacertae
10 S cvright 7198 /usr2/aaarf/server lacertae
10 R cwright 7200 host
10 0 cwright 7244 /bin/ps -elaf
10 R cwright 7204 /usr2/aaarf/aaarf-clct 1000000
10 S cwright 7245 /bin/grep cwright
% kill -9 7194 7198 7200 7204

Cube process 7200, in this case, is the ring host process. All AAARF related processes must

be killed before AAARF can be run again successfully. If you restart AAAI3F and experience

difficulties, kill it, and go back and make sure that you have removed the server and aaarf-clct

programs from the cube, and the rsh program on your workstation, as well as the aaarf main

program.

B.5 Instrumenting a Simple Cube Program

The AAARF data collection system, PRASE, gets trace data by intercepting certain iPSC/2

system calls, extracting the information it needs, and then passing the call on to the intended

recipient. AAARF does not animate the host, processor, only the node processors. However,

since the host program usually controls the overall execution, it is necessary to include it in the

instrumentation process. You should be looking at the host and node listings for the

remainder of this discussion.

B.5.1 Instrumenting the host Program

B-A

The host program is responsible for starting the data collection program in the background.

#ifdef PRASE
/* start the data collection program *I
system("/usr2/aaarf/aaarf_clct k");

#endif

The point at which aaarfjclct is started is critical: it must come after the cube has been

allocated, and it should come after any interactive dialogs your program has with the user. It

should also come before a startcubeo call to prevent loss of data.

Your host program must wait until aaarfxlclt finishes before it can finish. This is done by

reading a scratch file created by aaarf-clct just before it finishes. Insert the declaration

#ifdef PRASE
FILE *prase-ptr;

#endif

at the top of your main(o routine, and the following code segment

#ifdef PRASE
printf ("\n\nWaiting for all PRASE data to be collected.\n");
while ((prase-ptr = fopen ("prase-end",$r")) == NULL);
system ("rm prase-end");
fclose (prase.ptr);

#endif

at the end of the main(routine but BEFORE any calls to killcubeo. No include files are needed.

Finally, the AAARF data collection system uses IlOSTPID as thko pid of the data collection

program, aaarf-clct,.c. If you get. a compile time warning that IIOSTPID is being redefined, you

also are using HOSTPID for your host program and will have to change it both in the host program

and any node program that communicates with the host.

B.5.2 !nstrurncnhtiq t node Program(s)

The node programs are somewhat more complicatted. First, add the following include file

B-9

#ifdef PRASE
#include "prase.h"
#endif

to every node program or segment which makes system communication calls (csend, crecv, isend.

irecv, etc.).

For each unique node program (it should have a main() in it) add the following code segment.

at the very top of mainO:

#ifdef PRASE
prase-procs[O].numpids = 1; /* number of processes for node 0 */
prase-procs[O].pids[O] = 0; /* process id(s) for node 0 */
prase-procs[i].num-pids = 1;
prase-procs[1].pids[0] = 0;
prase.procs [2] .num.pids = 1;
prase-procs[2).pids[O0 = 0;
prase-procs[3].num-pids = 1;
prase-procs[3] .pids[O] = 0;
prase-procs[4].num-pids = 1;
prase-procs[4].pids[O] = 0;
prase-procs[5].num-pids = 1;
prase-procs[5] .pids[O] = 0;
prase-procs[6J.num-pids = 1;
prase-procs[6] .pids[O] = 0;
prase-procs[7].num-pids = 1;
prase-procs[7].pids[O] = 0;

prase-lowest-node = 0;
prase-start.time = 0;

praseinito;
#endif

If your program does not use pid=O for the node process id's, change the pid assignnentts to

match those which your program uses. If your system uses more than one process on any node,

change the number of processes for that node and add a process id line for each additional process,

making ,ure to assign the correct, process id's.

Add the following code segment to the end of the node program:

B-10

#ifdef PRASE
praseendo; /* notify aaarf-clct done */

#endif

There should be no system calls after this code segment, or the data will be lost. YOUR NOI)E

PROGRAM MUST TERMINATE VIA ITS OWN ACTION. If you use killcube(to terminate free

running node programs, they cannot, be instrumented without the necessity of having to manually

kill AAARF at the end of each run.

B.5.3 Changes to the Makefile

Your makefile must. be changed to reflect the location of the AAARF home directory on the

cube. Add the following definition:

AAARF = /usr2/aaarf,

and update your CLAGS to define PRASE as below:

CFLAGS = -0 -DPRASE -I$(AAARF).

The compilation line for the node program(s) must also include the library

aaarf-inst.a. Libraries must be the last object module in your object. module list. (if you have

one). For example:

node: node.o a.o b.o c.o $(AAARF)/aaarf_inst.a

cc $(CFLAGS) -o node node.o a.o b.o c.o $(AAARF)/aaarf_inst.a -node

See the makefile for the ring demo for an example. There is another example in the Carwash

directory.

B-I1

B.6 Source Listings

I/.

" This is a modified version of the ring program, which sends a message

" through each node of the cube in ascending order. The user can specify

" the length of the message and the number of times through the ring. The

" modifications include elimination of ring count reporting and the addition

"* of instrumentation code for AAARF. Also, a terminate message is added to

" gracefully terminate the node programs so that AAARF data collection can

"* can be completed. Rather than kill the node processes from the host, a

"* terminate message is passed around the ring so that each node knows when

"* to execute praseend(). When node 0 receives the terminate message from

"* other than the host, it sends a terminate message to the host and then

"= quits (All this is necessary because the ring program supplied by Intel

" has the node programs in a infinite loop with termination done by the

"- host program via the killcube() command.)

It outputs:

Sa) the time it took the message to go around the ring the specified

* number of times.

SI

char cpyrighto=" Copyright (c) 1989,1990 Intel Corporation"

#include <stdio.h>

#define NODE_0 0 /. node id of node "0" */

#define NODEPID 0 /* node process id *1

#define Host-Pid 1 /* host process id */

#define ALL-NODES -1 /* all nodes in the cube */

#define ALL-PIDS -1 /* all process id's in the cube s/

#define INITTYPE 10 /= type of initial mess;ge -/

#define TERM-TYPE 50 /* type of terminate message s/

#define COUNT-TYPE 40 /* type of count message */

#define TIME-TYPE 60 /- type of time message -/

#define INIT-MSGSIZE (sizeof(int) * 2) /* size of initial msg in bytes */

#define TERM-MSG-SIZE (sizeof(int)) /* size of terminate msg size */

#define CNT.ISGIZE isizeof(int)) /* size of count msg in bytes */

#define TIME-MSG.SIZE (sizeof(long)) /* size of time msg in bytes */

int msgJen, /- length of message */

i, /* counter */

ring-count, [* # of completed ring circuits ./

term.buf, /* buffer for terminate message from node 0 */

msg-buff[2]; / message buffer */

long time-buf; /s buffer for time information s/

float rnng-time. /* time to go around ring */

char CR = 13, /s ASCII Carriage Return code s/

main()

f

#ifdef PRASE

B- 12

FILE -prase-ptr;

#endif

printfk" "nNumber of times through the ring (0 or neg. value quits):)

scanf (" %d", &ring..count);

/* quit the program if 0 or neg. ~
if (ring-count < 0)

exit(o);

/* get length of msg ~
do {

printf(" Length of Ring message in bytes (0-65536):

scanf ("%d", &,msgJen);

while l(msgJen < 0) 11 (msgJen > 65536));

#ifdef PRASE /'* start the data collectio'i program .
system(" /usr2/aaarf/aaarf~clct &)

#endif

printf(" nLoading the cube"n")

setpidli-lostJ'id);

load("node", ALL-NODES, NODEJ'lD);

/* set # of circuits to be sent '

msg..buff[o] =ring-.count;

/* set message length to be sent ~
msg-bufftl] = misgJen;

/.send message INIT..TYPE from

msg-buff (length, * circuits)

of length INIT..MSG-SIZE

to NODE-0 at NODE-PID ~
csendl INIT-TYPE, msg-buff, INIT-eISG.SIZE, NODE-0, NODE-'Ifl);,

/* receive message TIME-.TYPE (time of circuits)

* into time-buf of TIM-sISG-SIZE bytes

crecv(TIME-TYPE, &timehbuf, TIME-MSG SIZE),

/* scale time (milliseconds) .

ring-time = (float)time.,buf/1000.00;

printf(" "nRing time : %0.2f sees. "n", ring-time);

/- send terminate message to ring */

csend(TERM-TYPE, term-buf, TERM-t4SG-SIZE, NODEO0, NODE-PID);

/- wait for node 0 to respond -/

crecv(TERM-TYPE, &term-buf, TERM-vISG-SIZE);

/- wait for aaarf-clct to terminate

#tfdef PRASE

printf (" n "nWaiting for all PRASE data to be collected. "n");

while l(prase-ptr =fopen ("prase~end" ,'r")) ==NULL);

system ("rm prase'end'");

fHose (prase-ptrl;

#endlf

printf(" Clearing the cube"n'n");

killcube(ALL.NODES, ALL-PIDS);

I.end host. program ~

B-I13

*This is the node program for the Ring example.

Node 0 is the "controller" and waits for message from the host

*a) the number of times to go around the RING,

*b) the length of the message to send around.

It then sends a message of the desired length to

-node I and counts the current circuit # around the RING.

*After each circuit node 0 sends a current ring count

message to the host.

*When the circuits are completed, Node 0 sends

*the Host the total tinie the message spent in the ring

-All the other nodes patiently wait for a message and

then dutifully pass it on to the next node in the RING.

char cpyrightfl=" Copyright (c) 1989,1990 Intel Corporation';

#ifdfef PRASE

#include "prase.h"

#end if

#define YIOST-NID myhostol A host node id

#define I-ost j'id I A* host process idA

#detine IN[T..TNPE 10 /. type of initial message -
#(k-fine NODE-'YPE 20 /- type of node messages *
#define TIME..TYPE 60 A* type of time message *
#define COUNT.'rYPE 40 A* type of count message *
#define TERNI-TYPE 50 /. type of terminate message ~
#define INIT-SIZE (sizeoflint) *2) A* size of initial message */

#define TERM-SIZE (sizeof(int)) /* size of terminate msg size *
#'letine TIME-SIZE (sizeof(longl) /* size of time message *
#define COUTNT-SIZE (sizeoflint I) A* size of c~ount message *
#define NIAX.MISG-SIZE 65536 /* max example message size '

int I, Aloop counter */
count, f.tmp storage for counter variable i *
msg, Amessage id for isend to host *
ring-count.. A number of times to go around ring *
tusg-len, /* length of messasge .

/- messaK,. buffer -/

insg-huMifNA X .MSG-SIZE / sizeoofl t)]'

mny-node', /* node id returned by mynodel)*

miy-pid, Apro'--ss id returned by mypid))*

ne-xt-node, Anext nnde in ring

next pid, Anext process in ring

onum-nodeq.

long i-nK-yp--, type of message received

St art t minle, Aclock reading -at start time *
rmng-tmme, time spent in ring -/

mnain(){

my..node = mynode(l; I get node number *
my-pid =mypidl); get pid *

#ifdef PRASE

prase..procs[O nUM-pIdS = 1.

p rase-pro cs[O],pids[O] =0;

prase-procs[ij nunipids = 1,

prase..procs[l] pids~o] = 0,

p rase -procs[2] num -pids = 1,

prase-procs[2] pids[0] =0;

prase-procs[31 num-pids = 1;
prase4)rocs[3] pids[0] =0,

prase-procs[41 num-pids =1,
prase-procs[4] pids[0] 0,

prasv-procs[u5]um-MpidIS = 1,
pra~se..procs(5I.pjds[0] 0.
prase-procs[t3] nurni.pids =1:

prast-procsti3] pids!0] = 0,
prase-procs[7] num-pids = 1,

pras-procs(7] pids(O] 0;

praseioawest-node =0.

prase-start-tiine =0;

r'raseiriqi

end f

riiininodes =numniiodes(), /-get number of nodes in cube ~
next-node (my-node + 1) 7v nmjnodes; A* calc the next node #in ring -
next pid =ny-pid. /*pid of next ring nod, in ring *
if (iy-node == 0) /-Afor root node only .

for (")

/* wait for message from host ~
rprobe) -Il).

/- get message type -
Insg-type=infotype(),

/- check type for TERM or INIT -
if(tnisg-type ==]NIT-TYPE){

/* recv. * of circuits and tusg size of
INIT-TYPE IN1T-SIZE bytes to msg-buff ~

crecvllNlT-TYPE. ntsg-buff, INIT-S1ZEI;

/-get circuit-,; and msg length .

ring-coiint = msg-buffljO.

insg-len = msg-bufftl],

/- start timing -

st art -t mte = mclock(1

A- send nisg ring-coint times *
for) i 1i < rtng-coiint; i+-l)J

A* send nisg-buf to the ring of
NODE-TYPE length msg-ien to

B-I15

next-node pid next-pid -/

csend(NODETYPE, msg-buff, msgien, next-node, nextpid);

/- wait to receive the message */

crecv(NODETYPE, msg-buff, msglen),

/* be sure that last message has been

* sent so that count can be modified.

If not, wait -]

}. end 'for' sending messages to ring */

/* calculate the time for circuits /

ring-time = mclock() - start-time;

/* send the time msg, of TIMETYPE

* size TIME-SIZE to the host pid Host-Pid */

csend(TIMETYPE, &ring-time, TIME-SIZE, HOST-NID, Host-Pid);

}/* end if INITTYPE */

else { /- assume TERM-TYPE */

/* receive TERMINATE from host */

crecv(TERM_-TYPE, msg-buff, rERMSIZE);

/* send TERMINATE to next node */

csend(TERM-TYPE, msg-buff, TERM-SIZE, next-node, next-pid);

/* wait for TERMINATE from last node ./
crecv(TERM-TYPE, msgEbuff, TERM-SIZE),

/* send TERMINATE to host */

csend(TERMTYPE, msgEbuff, TERM-SIZE, HOSTNID, Flost-Pid);

/* quit loop */
break,

}/* end else TERM-TYPE */

}/* end for loop for root node 0 */
}/* end node 0 code */

else { /* all other ring nodes execute this code -/

for (;,) {

/A wait for message from previous node */

cprobe(- 1);

/- get message type *

msg-type=infotypeo;

/- check for type NODE or INIT */

if(msg-type == NODETYPE){

/s wait to receive message of NODE-TYPE

* into msg-buf of MAX.MSG.SIZE bytes s/

crecv(NODE-TYPE, msg-buff, MAX..MSG-SIZE);

msgJen = infocount(;

A* send message on to next node in ring -/
csend(NODETYPE, msg-btfr, msgJen, next-node, next-pid);

}/ end if NODE-TYPE -/

else { / assume TERM I YPE s/

A send TERMINAI E to next node .1
csend(TERMTYPE, 2lsg-buff, TERM-SIZE, next.node, next-pid);

/* quit loop /
break;

}/* end else TERM.TYPE -/

}[* end for loop non-root node code s/

}/ 'nd non-root node code */

#ifdef PRASE

B-I1

praseend(), /- notify aaarf-clct done .

#nd if

/- nd node program n

13-7

Makefile for building C host and node applications for the Ring demo.

help:

Oaecho

Oecho "You must specify the type of node you wish to build a node"

qecho "executable for, choose one of the following:"

'qecho

,echo " make cx (for 386 nodes with 387 coprocessors)"

O-cho " make sx (for 386 nodes with SX coprocessors)"

fiecho " make rx (for i860 nodes)"

Aecho

AAARF = /usr2/aaarf

CFLAGS = -O -DPRASE -;$(AAARF)

cx: host node #Use default compile and link flags

sX:

make host

make "CFLAGS = -o -DPRASE -I, AAARF) -sx" "LDFLAGS=-sx" node

rx:

make host

make "CFLAGS = -O -i860" "LDFLAGS=-i860" node

host: host.o

cc $(CFLAGS) -o hcst host.o -host

node. node.o $(AAARF)/aaarf-inst.a

cc $(CFLAGS) -o node node.o $(AAARF)/aaarfinst.a $(LDFLAGS) -node

clean

rm host node host.o node.o

B- 18

Bibliography

1. Bailor, Paul D. Personal Communications. Wright-Patterson AFB, Dayton OHI, November
1992.

2. Brown, Marc H. Algorithm Animation. C(,>nbridge, Massachusetts: The MIT Press. 1987.

3. Diane T. Rover. Visualizing the Performance o] CPMD and Data-Parallel Programs. lechnical

Report, Lansing, MI: Michigan State University, August 1992.

4. Fife, Keith C. Graphical Representation of Algorithmic Processes. MIS thesis, School of Engi-
neering, Air Force Institute of Technology (AIU, Wright-Patterson AFB OH, 1989.

5. Fife, Keith C and Edward Williams. The AAARF Programmer's Guide.. Air Force Institute
of Technology, December 1990.

6. Fife, Keith C and Edward Williams. The AAARF Users's Guide.. Air Force Institute of
Technology, December 1990.

7. Francioni, J and Diane T. Rover. "Visual-Aural Representations of Performance for a Scalable
Application Program." Proceedings of Scalable High-Perform ance Computing Conference. 433
- 440. 1992.

8. Geist, G. A., et al. PICL: A Portable Instrumented Communicatiun Library. Technical Report,
Mathematical Sciences Section, Oak Ridge National Laboratory, 1992.

9. Heath, Michael T. "Visual Animation of Parallel Algorithms for Matrix Computations." Pro-
ceedings of !he Fifth Distributed Memory Computing Conference. 1990.

10. Heller, Dan. XView Programming Manual. Sebastopol CA: O'Reilly & Associates, Inc, 1991.

It. Hotchkiss, Robert S and Cheryl L Wampler. "The Auditorialization of Scientific Information."
Proceedings of Supercomputing '91. 453 - 461. 1991.

12. Kernighan, Brian W. and Dennis W. Richie. The C Programming Language. MA: Prentice
Hlall, Inc, 1988.

13. Lack, Michael D. A. Enhanced Graphical Representation of Parallel Algorithmic Processes.
MS thesis, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB 011, December 1991.

14. MasPar Computer Corporation. MasPar MP-1 Hardware Manual, September 1990.

15. Naps, Thomas L. "Algorithm Visualization in Computer Science Laboratories," SIGCSE
Bulletin, 22(l):105-110 (1990).

16. Open Software Foundation, Englewood Cliffs, New Jersey. OSF/Motif'm Programmer's
Guide, 1990.

17. Raalte, Thomas Van, editor. XView Reference Manual. Sebastr-' ol CA: O'Reilly k- Associates,
Inc, 1991.

18. Rubin, Robert v., James Walker II and Eric Golin. "Design and Implementation of Program-
rming Environments in the Visual Programmers Workbench." FProceedings of the 14th Annital
International Computer Software and Applications Conferentcs. 547--554. Piscataway, NJ:

IEEE Press, 1990.

19. Shimomura, Takao and Sadahiro [soda. "Linked-List Visualization for Debugging," IEEE

Software, 8(3):44-51 (May 1991).

20. Stasko, John T. "Simplifying Algorithm Animation with TANGO." Proceedings of the 1990
IEEE Workshop on Visual Languages. I-6. Piscataway, NJ: IEEE Press, 1990.

21. Sun Microsystems, Inc. Network Programming, 1990.

BIB-1

22. Sun Microsystems, Inc. Open Windows Version 2 Release Notes, 1990.

23. Sun Microsystems, Inc. Programming Utilities and Libraries, 1990.

24. Sun Microsystems, Inc. SunOS Reference Manual, 1990.

25. Sun Microsystems, Inc. SunView Programmer's Guide, 1990.

26. Sun Microsystems, Inc. SunView System Programmer's Guide, 1990.

27. SunSoft, Div of Sun Microsystems. Open WindowsTM Version 3for Sun05FrM 4.1.r, 1991.

28. Wernhart, Heidemarie and Rolan Mittermeir. "The HIBOL-2 Environment: A Basis for Visual
Programmin of Business Objects," Journal of Systems and Software, 12(2):157 -165 (May
1990).

29. Williams, Edward M. Graphical Representation of Parallel Algorithmic Processes. MS thesis,
School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB 01,
December 1990.

30. Williams, Edward M. Personal Communications. Los Angeles AFB, Los Angeles CA, 1992.

31. Young, Douglas A. Window Systems Programming and Applications with X1. Englewood
Cliffs, New Jersey: Prentice Hall, 1989.

BIB-2

Vita

Captain Charles R. Wright, Jr. was born on March 7, 1953 in Savannah, Georgia. fie

graduated from Wayland Union High School in Wayland, Michigan in 1971. He entered the Air

Force on July 21, 1971. He received a Bachelor of Science in Electrical Engineering from New

Mexico State University in May of 1986. He received a commission upon graduation from Officers

Training School in August of 1986, and was assigned to the Air Force Materials Laboratory, Wright-

Patterson AFB, Ohio where he worked as a computer research scientist with the Manufacturing

Research Group. He entered the School of Engineering, Air Force Institute of Technology in May,

1991. He graduated with a Masters in Computer Science in December, 1992.

Permanent address: 411 Round Lake Road
Caledonia, Michigan 49316

VITA-i

REPORT DOCUMENTATION PAGE 'i,:.g -Icorov 3

* ~ ~ ~ 1 '. '.*c 10r ,De!:no)10 !~ea r. e "re or 1-1**'1r 111,; .n .rm .sre rarl'¶,;2- --1:3 t-. . r ,ze-

::: " .1 .0 O *,d t'-)t _1'c l. ed h ~~'r.e',cr 4ecu:* pl cleý. /! .,8 . C A-3

1. AGENCY USE ONLY LeaVe 'Iank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1992 Master's Thesis

4. 7ITLE -IND SUBTITLE 5. FUNDING NUMBERS

X-AAARF An X Windows Version of the AFIT Algorithm Animation Re-
search Facility

6. AUTHCR(S)

Charles R. Wright, Jr., Captain, USAF

E7. 5 .AFCR1.!NG ORGANIZATICN NAME(S) AND ADDRESS(ES) S. PERFCRMING CRGANIZAT:C;1".

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER

AFIT/GCS/ENG/92D-22

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING

WL/AAAA-2, Model Based Vision Laboratory AGENCY REPCRT NUMBER

Target Recognition Branch, Mission Avionics Division,
Avionics Directorate, Wright Laboratory
Wright-Patterson AFB, OH

11. SUPPLEMENTAR'Y N•OTES

12a. OISTRIBU-:CN AVAILABILITY STATEMENT 12b. DISTRIBUT!ON CODE
Approved for public release; distribution unlimited

13. ABSTRACT MaxIrxmum 200 words)

Abstract

The AFIT Algorithm Animation Research Facility was developed by the Air Force Institute of Technology
(AFIT) as a teaching aid for data structures and algorithm design of sequential processes. However, AAARF's
unique design makes it particularly suitable for the animation of algorithms running on remote systems. In
particular, an extensive set of parallel performance animations has been developed for the Intel iPSC/2
Hypercube for parallel program analysis and performance optimization.

The AAARF system was originally developed using the Sun Microsystems' SunViewTM windowing system.
Recent advances in Graphical User Interface (GUI) technology combined with Sun's adoption of the X Window
System as their workstation window environment, has necessitated the replacement of AAARF's GUI with a
modern, X-based user interface.

This report describes the GUI replacement process, starting with selecting a GUI toolkit, designing and
implementing the new user interface, testing, and finally the results of implementing the new user interface.
Also included is a discussion of several changes/enhancements to AAARF which were necessary before the
GUI replacement process began.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Algorithm Animation, Visualization, X Windows System, XView, Parallel Process- 112
Sing 1.6. ?R;c- CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRAC-
OF REPORTI OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Stardara ' 298 Rev 2-,39
2P-%8 * 32

